Phiphat Sonthongphithak, Chonchanok Muangnapoh, C. Ratanatawanate, Teerasak E-kobon, Akkharadet Piyasaengthong, P. Hongsachart, M. Sriuttha, Nipaporn Sengkhamparn, A. C. T. A. Dhanapal, Kitiyaporn Wittayanarakul
{"title":"利用风信子提取物生物合成氧化锌纳米颗粒:表征、抗菌和染料去除评估","authors":"Phiphat Sonthongphithak, Chonchanok Muangnapoh, C. Ratanatawanate, Teerasak E-kobon, Akkharadet Piyasaengthong, P. Hongsachart, M. Sriuttha, Nipaporn Sengkhamparn, A. C. T. A. Dhanapal, Kitiyaporn Wittayanarakul","doi":"10.55713/jmmm.v34i2.1979","DOIUrl":null,"url":null,"abstract":"In nanobiotechnology, synthesizing metal nanoparticles (NPs) using plant extracts has recently been increasing because of eco-friendly and low-cost methods. For this work, zinc oxide nanoparticles (ZnO NPs) have been synthesized by biosynthesis process using water hyacinth extracts (WHE). The water hyacinth (WH) was chosen because the WH is fast-growing and the most toxic aquatic plant in the world. Therefore, this work aims to apply these WHE to be a precursor in the biosynthesis of ZnO NPs (ZnOBio-NPs) based on the research of a sustainable environment. The ZnO NPs synthesized by the WHE were investigated for their antibacterial and photocatalytic activities. An UV-Vis spectrum showed a specific absorbance peak around 362 nm with an average band gap of 3.22 eV. As the result, TEM analysis revealed a triangle structure with an average size of about 64.05 nm. The peaks of XRD analysis show a hexagonal wurtzite structure. The ZnO NPs synthesized by the WHE showed higher antibacterial activity against S. aureus better than E. coli. It is interesting to note that the ZnOBio-NPs synthesized from the WHE can have an anti P. acnes (JB7) with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) equal to 50 µg∙mL‒1 and 200 µg∙mL‒1, respectively. In addition, the ZnOBio-NPs also can effectively remove more than 90% of the malachite green within 180 minutes with extremely high reuse.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of zinc oxide nanoparticles using water hyacinth extracts: Characterization, evaluation of antimicrobial and dye removal\",\"authors\":\"Phiphat Sonthongphithak, Chonchanok Muangnapoh, C. Ratanatawanate, Teerasak E-kobon, Akkharadet Piyasaengthong, P. Hongsachart, M. Sriuttha, Nipaporn Sengkhamparn, A. C. T. A. Dhanapal, Kitiyaporn Wittayanarakul\",\"doi\":\"10.55713/jmmm.v34i2.1979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nanobiotechnology, synthesizing metal nanoparticles (NPs) using plant extracts has recently been increasing because of eco-friendly and low-cost methods. For this work, zinc oxide nanoparticles (ZnO NPs) have been synthesized by biosynthesis process using water hyacinth extracts (WHE). The water hyacinth (WH) was chosen because the WH is fast-growing and the most toxic aquatic plant in the world. Therefore, this work aims to apply these WHE to be a precursor in the biosynthesis of ZnO NPs (ZnOBio-NPs) based on the research of a sustainable environment. The ZnO NPs synthesized by the WHE were investigated for their antibacterial and photocatalytic activities. An UV-Vis spectrum showed a specific absorbance peak around 362 nm with an average band gap of 3.22 eV. As the result, TEM analysis revealed a triangle structure with an average size of about 64.05 nm. The peaks of XRD analysis show a hexagonal wurtzite structure. The ZnO NPs synthesized by the WHE showed higher antibacterial activity against S. aureus better than E. coli. It is interesting to note that the ZnOBio-NPs synthesized from the WHE can have an anti P. acnes (JB7) with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) equal to 50 µg∙mL‒1 and 200 µg∙mL‒1, respectively. In addition, the ZnOBio-NPs also can effectively remove more than 90% of the malachite green within 180 minutes with extremely high reuse.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v34i2.1979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biosynthesis of zinc oxide nanoparticles using water hyacinth extracts: Characterization, evaluation of antimicrobial and dye removal
In nanobiotechnology, synthesizing metal nanoparticles (NPs) using plant extracts has recently been increasing because of eco-friendly and low-cost methods. For this work, zinc oxide nanoparticles (ZnO NPs) have been synthesized by biosynthesis process using water hyacinth extracts (WHE). The water hyacinth (WH) was chosen because the WH is fast-growing and the most toxic aquatic plant in the world. Therefore, this work aims to apply these WHE to be a precursor in the biosynthesis of ZnO NPs (ZnOBio-NPs) based on the research of a sustainable environment. The ZnO NPs synthesized by the WHE were investigated for their antibacterial and photocatalytic activities. An UV-Vis spectrum showed a specific absorbance peak around 362 nm with an average band gap of 3.22 eV. As the result, TEM analysis revealed a triangle structure with an average size of about 64.05 nm. The peaks of XRD analysis show a hexagonal wurtzite structure. The ZnO NPs synthesized by the WHE showed higher antibacterial activity against S. aureus better than E. coli. It is interesting to note that the ZnOBio-NPs synthesized from the WHE can have an anti P. acnes (JB7) with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) equal to 50 µg∙mL‒1 and 200 µg∙mL‒1, respectively. In addition, the ZnOBio-NPs also can effectively remove more than 90% of the malachite green within 180 minutes with extremely high reuse.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.