Shuyue Xie, Jinting Wu, Baohan Li, Huicong Liu, Hao Wang, Jun Li, Bo Zhang
{"title":"一链杂化碘铂酸盐的结构、特性、光电流响应和理论研究","authors":"Shuyue Xie, Jinting Wu, Baohan Li, Huicong Liu, Hao Wang, Jun Li, Bo Zhang","doi":"10.1002/crat.202400060","DOIUrl":null,"url":null,"abstract":"<p>Exploring new haloplumbate hybrids and understanding the structure-activity relationships are of great significance for further promoting their applications in the photovoltaic fields. Herein, with the in situ-formed [Hmd]<sup>+</sup> (md = 2-methyl-1,3-diazinane) templates, a new organic–inorganic hybrid iodoplumbate, namely [Hmd]PbI<sub>3</sub> (<b>1</b>), is successfully constructed and then structurally characterized using multiple technical approaches. X-ray crystallography studies show that compound <b>1</b> features the typical 1D chain-like motifs of [Pb<sub>2</sub>I<sub>6</sub>]<i><sub>n</sub></i><sup>2</sup><i><sup>n</sup></i><sup>−</sup>, generating the 3D supermolecular network by the extensive hydrogen bond interactions. Interestingly, compound <b>1</b> exhibits the semiconductive behavior, with an optical band gap of 2.72 eV. More attractively, the title compound has good photoelectric switching performances under the alternating light irradiation, whose photocurrent densities compete well with or surpass those of many metal halide counterparts. Further theoretical analyses reveal that the title compound has a more dispersive band structure (especially the value band) that facilitates the transport of charge carriers, which may be the main origin of its excellent optoelectronic performance. Presented in this paper also bring the studies of Hirshfeld surface, X-ray photoelectron spectroscopy (XPS) as well as thermogravimetric analysis.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure, Characterizations, Photocurrent Response, and Theoretical Study of One Chained Hybrid Iodoplumbate\",\"authors\":\"Shuyue Xie, Jinting Wu, Baohan Li, Huicong Liu, Hao Wang, Jun Li, Bo Zhang\",\"doi\":\"10.1002/crat.202400060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exploring new haloplumbate hybrids and understanding the structure-activity relationships are of great significance for further promoting their applications in the photovoltaic fields. Herein, with the in situ-formed [Hmd]<sup>+</sup> (md = 2-methyl-1,3-diazinane) templates, a new organic–inorganic hybrid iodoplumbate, namely [Hmd]PbI<sub>3</sub> (<b>1</b>), is successfully constructed and then structurally characterized using multiple technical approaches. X-ray crystallography studies show that compound <b>1</b> features the typical 1D chain-like motifs of [Pb<sub>2</sub>I<sub>6</sub>]<i><sub>n</sub></i><sup>2</sup><i><sup>n</sup></i><sup>−</sup>, generating the 3D supermolecular network by the extensive hydrogen bond interactions. Interestingly, compound <b>1</b> exhibits the semiconductive behavior, with an optical band gap of 2.72 eV. More attractively, the title compound has good photoelectric switching performances under the alternating light irradiation, whose photocurrent densities compete well with or surpass those of many metal halide counterparts. Further theoretical analyses reveal that the title compound has a more dispersive band structure (especially the value band) that facilitates the transport of charge carriers, which may be the main origin of its excellent optoelectronic performance. Presented in this paper also bring the studies of Hirshfeld surface, X-ray photoelectron spectroscopy (XPS) as well as thermogravimetric analysis.</p>\",\"PeriodicalId\":48935,\"journal\":{\"name\":\"Crystal Research and Technology\",\"volume\":\"59 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Research and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400060\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400060","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Structure, Characterizations, Photocurrent Response, and Theoretical Study of One Chained Hybrid Iodoplumbate
Exploring new haloplumbate hybrids and understanding the structure-activity relationships are of great significance for further promoting their applications in the photovoltaic fields. Herein, with the in situ-formed [Hmd]+ (md = 2-methyl-1,3-diazinane) templates, a new organic–inorganic hybrid iodoplumbate, namely [Hmd]PbI3 (1), is successfully constructed and then structurally characterized using multiple technical approaches. X-ray crystallography studies show that compound 1 features the typical 1D chain-like motifs of [Pb2I6]n2n−, generating the 3D supermolecular network by the extensive hydrogen bond interactions. Interestingly, compound 1 exhibits the semiconductive behavior, with an optical band gap of 2.72 eV. More attractively, the title compound has good photoelectric switching performances under the alternating light irradiation, whose photocurrent densities compete well with or surpass those of many metal halide counterparts. Further theoretical analyses reveal that the title compound has a more dispersive band structure (especially the value band) that facilitates the transport of charge carriers, which may be the main origin of its excellent optoelectronic performance. Presented in this paper also bring the studies of Hirshfeld surface, X-ray photoelectron spectroscopy (XPS) as well as thermogravimetric analysis.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing