空气旋转滑翔弧放电特性实验研究

Surong Sun, Fei Chen, Yu-Hang Zheng, Chao Wang, Hai-Xing Wang
{"title":"空气旋转滑翔弧放电特性实验研究","authors":"Surong Sun, Fei Chen, Yu-Hang Zheng, Chao Wang, Hai-Xing Wang","doi":"10.1088/1361-6595/ad5401","DOIUrl":null,"url":null,"abstract":"\n In this study, the discharge characteristics of air rotating gliding arc are investigated by the synchronous measurements of digital oscilloscope and high-speed camera, and emission spectrum. The discharge evolution in one complete motion cycle exhibits “breakdown-elongation-extinction” process accompanied by the jump of arc root and back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at the input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at the input voltage of 270 V has relatively low breakdown frequency of 0.33 kHz and average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of N2 state are respectively measured to 2200 K and 4400 K in U-B mode, and in S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NOγ band emission intensity generally rises from U-B mode to S-G mode since the gas temperature and arc existence time rise, indicating that S-G mode may be beneficial for the vibrationally-promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air rotating gliding arc for selecting a suitable mode to achieve better plasma performance in practical applications.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"82 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the discharge characteristics of air rotating gliding arc\",\"authors\":\"Surong Sun, Fei Chen, Yu-Hang Zheng, Chao Wang, Hai-Xing Wang\",\"doi\":\"10.1088/1361-6595/ad5401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, the discharge characteristics of air rotating gliding arc are investigated by the synchronous measurements of digital oscilloscope and high-speed camera, and emission spectrum. The discharge evolution in one complete motion cycle exhibits “breakdown-elongation-extinction” process accompanied by the jump of arc root and back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at the input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at the input voltage of 270 V has relatively low breakdown frequency of 0.33 kHz and average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of N2 state are respectively measured to 2200 K and 4400 K in U-B mode, and in S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NOγ band emission intensity generally rises from U-B mode to S-G mode since the gas temperature and arc existence time rise, indicating that S-G mode may be beneficial for the vibrationally-promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air rotating gliding arc for selecting a suitable mode to achieve better plasma performance in practical applications.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"82 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad5401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad5401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过数字示波器和高速相机的同步测量以及发射光谱,研究了空气旋转滑翔弧的放电特性。在一个完整的运动周期内,放电演化呈现出 "击穿-拉长-熄灭 "的过程,并伴有弧根跃迁和反击穿现象。通过增加输入电压或降低切向和轴向气体流速,放电从不稳定性击穿模式(U-B)演化到过渡模式,最后进入稳定的滑行模式(S-G)。输入电压为 120 V 时的 U-B 模式具有较大的还原电场和 1.90 eV 的较高电子温度,但电弧长度和存在时间很短。输入电压为 270 V 时的 S-G 模式击穿频率相对较低,为 0.33 kHz,平均击穿电流为 1.31 A,这意味着电弧沿着螺旋电极稳定地滑行和旋转。在 S-G 模式下,平均电子温度为 0.64 eV,而电弧长度和存在时间较长。从测量到的激发物种的发射强度的演变中可以发现,从 U-B 模式到 S-G 模式,由于气体温度和电弧存在时间的增加,NOγ 波段的发射强度普遍上升,这表明 S-G 模式可能有利于振动促进的 Zeldovich 反应。这项研究可以加深对空气旋转滑翔电弧中电弧特性的理解,从而选择合适的模式,在实际应用中获得更好的等离子体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the discharge characteristics of air rotating gliding arc
In this study, the discharge characteristics of air rotating gliding arc are investigated by the synchronous measurements of digital oscilloscope and high-speed camera, and emission spectrum. The discharge evolution in one complete motion cycle exhibits “breakdown-elongation-extinction” process accompanied by the jump of arc root and back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at the input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at the input voltage of 270 V has relatively low breakdown frequency of 0.33 kHz and average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of N2 state are respectively measured to 2200 K and 4400 K in U-B mode, and in S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NOγ band emission intensity generally rises from U-B mode to S-G mode since the gas temperature and arc existence time rise, indicating that S-G mode may be beneficial for the vibrationally-promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air rotating gliding arc for selecting a suitable mode to achieve better plasma performance in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ThunderBoltz: an open-source direct simulation Monte Carlo Boltzmann solver for plasma transport, chemical kinetics, and 0D modeling Kinetic investigation of discharge performance for Xe, Kr, and Ar in a miniature ion thruster using a fast converging PIC-MCC-DSMC model Ground experimental study of the electron density of plasma sheath reduced by pulsed discharge Breakdown modes of capacitively coupled plasma: I. Transitions from glow discharge to multipactor Breakdown modes of capacitively coupled plasma: II. Non-self-sustained discharges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1