利用 LBP-URIGL 混合描述符进行高级面部识别

Q3 Engineering Pollack Periodica Pub Date : 2024-06-03 DOI:10.1556/606.2024.00972
Sajjad H. Hendi, Hazeem B. Taher, Karim Q. Hussein
{"title":"利用 LBP-URIGL 混合描述符进行高级面部识别","authors":"Sajjad H. Hendi, Hazeem B. Taher, Karim Q. Hussein","doi":"10.1556/606.2024.00972","DOIUrl":null,"url":null,"abstract":"Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":"63 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced facial recognition with LBP-URIGL hybrid descriptors\",\"authors\":\"Sajjad H. Hendi, Hazeem B. Taher, Karim Q. Hussein\",\"doi\":\"10.1556/606.2024.00972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.\",\"PeriodicalId\":35003,\"journal\":{\"name\":\"Pollack Periodica\",\"volume\":\"63 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollack Periodica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/606.2024.00972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2024.00972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别技术是安全和人机交互领域的变革性技术,重塑了社会互动。强大的描述符对于高精度的机器学习任务(如识别和召回)至关重要,是这一变革不可或缺的一部分。本文提出了一种混合模型,用于增强面部表示的局部二进制模式描述符。通过将旋转不变的局部二元模式与均匀旋转不变的灰度级共现整合在一起,采用线性判别分析进行特征空间优化,并利用人工神经网络进行分类,该模型在奥利维研究实验室的准确率达到 100%,在马斯特里赫特大学计算机视觉测试的准确率达到 99.98%,在扩展耶鲁 B 测试的准确率达到 99.17%,大大超过了传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced facial recognition with LBP-URIGL hybrid descriptors
Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pollack Periodica
Pollack Periodica Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
82
期刊介绍: Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.
期刊最新文献
Porosity and pore morphology characteristics of zirconia-alumina bioceramics The practical implementations of axes in the design of a systematic office layout Collision and contiguity in the transformation of Prishtina's urban form Concrete's fire resistance improvement with waste glass and ceramic aggregates Advanced facial recognition with LBP-URIGL hybrid descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1