带有猎物食肉和疾病的延迟分数阶捕食者-猎物模型的动力学特性

Hui Zhang, Ahmadjan Muhammadhaji
{"title":"带有猎物食肉和疾病的延迟分数阶捕食者-猎物模型的动力学特性","authors":"Hui Zhang, Ahmadjan Muhammadhaji","doi":"10.3390/fractalfract8060333","DOIUrl":null,"url":null,"abstract":"In this study, a class of delayed fractional-order predation models with disease and cannibalism in the prey was studied. In addition, we considered the prey stage structure and the refuge effect. A Holling type-II functional response function was used to describe predator–prey interactions. First, the existence and uniform boundedness of the solutions of the systems without delay were proven. The local stability of the equilibrium point was also analyzed. Second, we used the digestion delay of predators as a bifurcation parameter to determine the conditions under which Hopf bifurcation occurs. Finally, a numerical simulation was performed to validate the obtained results. Numerical simulations have shown that cannibalism contributes to the elimination of disease in diseased prey populations. In addition, the size of the bifurcation point τ0 decreased with an increase in the fractional order, and this had a significant effect on the stability of the system.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"31 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Delayed Fractional-Order Predator–Prey Model with Cannibalism and Disease in Prey\",\"authors\":\"Hui Zhang, Ahmadjan Muhammadhaji\",\"doi\":\"10.3390/fractalfract8060333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a class of delayed fractional-order predation models with disease and cannibalism in the prey was studied. In addition, we considered the prey stage structure and the refuge effect. A Holling type-II functional response function was used to describe predator–prey interactions. First, the existence and uniform boundedness of the solutions of the systems without delay were proven. The local stability of the equilibrium point was also analyzed. Second, we used the digestion delay of predators as a bifurcation parameter to determine the conditions under which Hopf bifurcation occurs. Finally, a numerical simulation was performed to validate the obtained results. Numerical simulations have shown that cannibalism contributes to the elimination of disease in diseased prey populations. In addition, the size of the bifurcation point τ0 decreased with an increase in the fractional order, and this had a significant effect on the stability of the system.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"31 36\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8060333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8060333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了一类延迟分数阶捕食模型,该模型中的猎物存在疾病和食人现象。此外,我们还考虑了猎物的阶段结构和避难所效应。采用霍林 II 型功能响应函数来描述捕食者与猎物之间的相互作用。首先,证明了无延迟系统解的存在性和均匀有界性。同时还分析了平衡点的局部稳定性。其次,我们利用捕食者的消化延迟作为分岔参数,确定了发生霍普夫分岔的条件。最后,我们进行了数值模拟来验证所获得的结果。数值模拟表明,食人行为有助于消除患病猎物种群中的疾病。此外,分岔点 τ0 的大小随着分数阶数的增加而减小,这对系统的稳定性有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of a Delayed Fractional-Order Predator–Prey Model with Cannibalism and Disease in Prey
In this study, a class of delayed fractional-order predation models with disease and cannibalism in the prey was studied. In addition, we considered the prey stage structure and the refuge effect. A Holling type-II functional response function was used to describe predator–prey interactions. First, the existence and uniform boundedness of the solutions of the systems without delay were proven. The local stability of the equilibrium point was also analyzed. Second, we used the digestion delay of predators as a bifurcation parameter to determine the conditions under which Hopf bifurcation occurs. Finally, a numerical simulation was performed to validate the obtained results. Numerical simulations have shown that cannibalism contributes to the elimination of disease in diseased prey populations. In addition, the size of the bifurcation point τ0 decreased with an increase in the fractional order, and this had a significant effect on the stability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform Morphological Features of Mathematical and Real-World Fractals: A Survey An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions Semi-Regular Continued Fractions with Fast-Growing Partial Quotients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1