Tristan McKenzie, Amy Moody, João Barreira, Xiaoyi Guo, Anael Cohen, Stephanie J. Wilson, Murugan Ramasamy
{"title":"人为压力下沿海地下水系统中的金属:行为、驱动因素和新威胁综述","authors":"Tristan McKenzie, Amy Moody, João Barreira, Xiaoyi Guo, Anael Cohen, Stephanie J. Wilson, Murugan Ramasamy","doi":"10.1002/lol2.10413","DOIUrl":null,"url":null,"abstract":"<p>Submarine groundwater discharge (SGD) dynamically links land- and ocean-derived chemical constituents, such as metals, in the coastal ocean. While many metals are sediment-bound, changing environmental conditions, particularly along the coast, may lead to increased release of metals to their dissolved and more bioavailable form. Here, we review metal behavior, speciation, and drivers of mobilization in the coastal environment under anthropogenic influence. We also model global metal contamination risk to the coastal ocean via SGD considering anthropogenic and hydrogeologic pressures, where tropical regions with high population density, SGD, and acid sulfate soils (4% of the global coast) present the highest risk. Although most SGD studies focus on other analytes, such as nutrients, this review demonstrates the importance of considering SGD as a critical pathway for metals to reach the coastal ocean under rapidly changing environmental conditions.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 4","pages":"388-410"},"PeriodicalIF":5.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10413","citationCount":"0","resultStr":"{\"title\":\"Metals in coastal groundwater systems under anthropogenic pressure: a synthesis of behavior, drivers, and emerging threats\",\"authors\":\"Tristan McKenzie, Amy Moody, João Barreira, Xiaoyi Guo, Anael Cohen, Stephanie J. Wilson, Murugan Ramasamy\",\"doi\":\"10.1002/lol2.10413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Submarine groundwater discharge (SGD) dynamically links land- and ocean-derived chemical constituents, such as metals, in the coastal ocean. While many metals are sediment-bound, changing environmental conditions, particularly along the coast, may lead to increased release of metals to their dissolved and more bioavailable form. Here, we review metal behavior, speciation, and drivers of mobilization in the coastal environment under anthropogenic influence. We also model global metal contamination risk to the coastal ocean via SGD considering anthropogenic and hydrogeologic pressures, where tropical regions with high population density, SGD, and acid sulfate soils (4% of the global coast) present the highest risk. Although most SGD studies focus on other analytes, such as nutrients, this review demonstrates the importance of considering SGD as a critical pathway for metals to reach the coastal ocean under rapidly changing environmental conditions.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"9 4\",\"pages\":\"388-410\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10413\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10413","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Metals in coastal groundwater systems under anthropogenic pressure: a synthesis of behavior, drivers, and emerging threats
Submarine groundwater discharge (SGD) dynamically links land- and ocean-derived chemical constituents, such as metals, in the coastal ocean. While many metals are sediment-bound, changing environmental conditions, particularly along the coast, may lead to increased release of metals to their dissolved and more bioavailable form. Here, we review metal behavior, speciation, and drivers of mobilization in the coastal environment under anthropogenic influence. We also model global metal contamination risk to the coastal ocean via SGD considering anthropogenic and hydrogeologic pressures, where tropical regions with high population density, SGD, and acid sulfate soils (4% of the global coast) present the highest risk. Although most SGD studies focus on other analytes, such as nutrients, this review demonstrates the importance of considering SGD as a critical pathway for metals to reach the coastal ocean under rapidly changing environmental conditions.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.