海洋酸化会导致生理和生态系统层面的临界点吗?批判性评估

Christopher E. Cornwall, S. Comeau, Ben P. Harvey
{"title":"海洋酸化会导致生理和生态系统层面的临界点吗?批判性评估","authors":"Christopher E. Cornwall, S. Comeau, Ben P. Harvey","doi":"10.5194/esd-15-671-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Ocean acidification (OA) is predicted to cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to calcify and grow and by influencing the physiology of many others. In both calcifying and non-calcifying taxa, ocean acidification could further impair the ability of marine life to regulate internal pH and thus metabolic function and/or behaviour. Identifying tipping points at which these effects will occur for different taxa due to the direct impacts of ocean acidification on organism physiology is difficult because they have not adequately been determined for most taxa nor for ecosystems at higher levels. This is due to the presence of both resistant and sensitive species within most taxa. However, calcifying taxa such as coralline algae, corals, molluscs, and sea urchins appear to be most sensitive to ocean acidification. Conversely, non-calcareous seaweeds, seagrasses, diatoms, cephalopods, and fish tend to be more resistant or even benefit from the direct effects of ocean acidification, though the effects of ocean acidification are more subtle for these taxa. While physiological tipping points of the effects of ocean acidification either do not exist or are not well defined, their direct effects on organism physiology will have flow-on indirect effects. These indirect effects will cause ecological tipping points in the future through changes in competition, herbivory, and predation. Evidence for indirect effects and ecological change is mostly taken from benthic ecosystems in warm temperate–tropical locations in situ that have elevated CO2. Species abundances at these locations indicate a shift away from calcifying taxa and towards non-calcareous taxa at high-CO2 concentrations. For example, lower abundance of corals and coralline algae and higher covers of non-calcareous macroalgae, often turfing species, are often found at elevated CO2. However, there are some locations where only minor changes or no detectable changes occur. Where ecological tipping points do occur, it is usually at locations with naturally elevated mean pCO2 concentrations of 500 µatm or more, which also corresponds to just under that concentration where the direct physiological impacts of ocean acidification are detectable in the most sensitive taxa in laboratory research (coralline algae and corals). Collectively, the available data support the concern that ocean acidification will most likely cause ecological change in the near future in most benthic marine ecosystems, with tipping points in some ecosystems as low as 500 µatm pCO2. However, further research is required to more adequately quantify and model the extent of these impacts in order to accurately project future marine ecosystem tipping points under ocean acidification.\n","PeriodicalId":504863,"journal":{"name":"Earth System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are physiological and ecosystem-level tipping points caused by ocean acidification? A critical evaluation\",\"authors\":\"Christopher E. Cornwall, S. Comeau, Ben P. Harvey\",\"doi\":\"10.5194/esd-15-671-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Ocean acidification (OA) is predicted to cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to calcify and grow and by influencing the physiology of many others. In both calcifying and non-calcifying taxa, ocean acidification could further impair the ability of marine life to regulate internal pH and thus metabolic function and/or behaviour. Identifying tipping points at which these effects will occur for different taxa due to the direct impacts of ocean acidification on organism physiology is difficult because they have not adequately been determined for most taxa nor for ecosystems at higher levels. This is due to the presence of both resistant and sensitive species within most taxa. However, calcifying taxa such as coralline algae, corals, molluscs, and sea urchins appear to be most sensitive to ocean acidification. Conversely, non-calcareous seaweeds, seagrasses, diatoms, cephalopods, and fish tend to be more resistant or even benefit from the direct effects of ocean acidification, though the effects of ocean acidification are more subtle for these taxa. While physiological tipping points of the effects of ocean acidification either do not exist or are not well defined, their direct effects on organism physiology will have flow-on indirect effects. These indirect effects will cause ecological tipping points in the future through changes in competition, herbivory, and predation. Evidence for indirect effects and ecological change is mostly taken from benthic ecosystems in warm temperate–tropical locations in situ that have elevated CO2. Species abundances at these locations indicate a shift away from calcifying taxa and towards non-calcareous taxa at high-CO2 concentrations. For example, lower abundance of corals and coralline algae and higher covers of non-calcareous macroalgae, often turfing species, are often found at elevated CO2. However, there are some locations where only minor changes or no detectable changes occur. Where ecological tipping points do occur, it is usually at locations with naturally elevated mean pCO2 concentrations of 500 µatm or more, which also corresponds to just under that concentration where the direct physiological impacts of ocean acidification are detectable in the most sensitive taxa in laboratory research (coralline algae and corals). Collectively, the available data support the concern that ocean acidification will most likely cause ecological change in the near future in most benthic marine ecosystems, with tipping points in some ecosystems as low as 500 µatm pCO2. However, further research is required to more adequately quantify and model the extent of these impacts in order to accurately project future marine ecosystem tipping points under ocean acidification.\\n\",\"PeriodicalId\":504863,\"journal\":{\"name\":\"Earth System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth System Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/esd-15-671-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-15-671-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要。据预测,海洋酸化(OA)将损害钙质类群的钙化和生长能力,并影响许多其他类群的生理机能,从而导致许多海洋生态系统发生深刻变化。无论是钙化类群还是非钙化类群,海洋酸化都会进一步损害海洋生物调节体内pH值的能力,进而影响新陈代谢功能和/或行为。由于海洋酸化对生物生理机能的直接影响,确定不同类群受这些影响的临界点十分困难,因为大多数类群和更高层次的生态系统都还没有充分确定这些临界点。这是因为大多数类群中既有耐酸物种,也有敏感物种。然而,珊瑚藻、珊瑚、软体动物和海胆等钙化类群似乎对海洋酸化最为敏感。相反,非钙质海藻、海草、硅藻、头足类动物和鱼类往往更能抵御甚至受益于海洋酸化的直接影响,尽管海洋酸化对这些类群的影响更为微妙。虽然海洋酸化影响的生理临界点要么不存在,要么没有很好地定义,但其对生物生理的直接影响将产生间接影响。这些间接影响将通过竞争、食草和捕食的变化在未来导致生态临界点。间接效应和生态变化的证据主要来自二氧化碳升高的暖温带热带地区的底栖生态系统。这些地点的物种丰度表明,在高二氧化碳浓度下,钙化类群向非钙化类群转移。例如,在二氧化碳浓度升高的情况下,珊瑚和珊瑚藻的丰度较低,而非石灰质大型藻类(通常为草皮类)的覆盖率较高。不过,有些地方只会发生微小变化或无法检测到变化。当生态临界点出现时,通常是在pCO2平均浓度自然升高到500 µatm或更高的地方,也就是在实验室研究中最敏感的分类群(珊瑚藻类和珊瑚)能够检测到海洋酸化直接生理影响的浓度之下。总之,现有数据支持这样一种观点,即海洋酸化很可能在不久的将来导致大多数底栖海洋生态系统的生态变化,某些生态系统的临界点可低至 500 µatm pCO2。然而,还需要进一步的研究来更充分地量化和模拟这些影响的程度,以准确预测海洋酸化下未来海洋生态系统的临界点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Are physiological and ecosystem-level tipping points caused by ocean acidification? A critical evaluation
Abstract. Ocean acidification (OA) is predicted to cause profound shifts in many marine ecosystems by impairing the ability of calcareous taxa to calcify and grow and by influencing the physiology of many others. In both calcifying and non-calcifying taxa, ocean acidification could further impair the ability of marine life to regulate internal pH and thus metabolic function and/or behaviour. Identifying tipping points at which these effects will occur for different taxa due to the direct impacts of ocean acidification on organism physiology is difficult because they have not adequately been determined for most taxa nor for ecosystems at higher levels. This is due to the presence of both resistant and sensitive species within most taxa. However, calcifying taxa such as coralline algae, corals, molluscs, and sea urchins appear to be most sensitive to ocean acidification. Conversely, non-calcareous seaweeds, seagrasses, diatoms, cephalopods, and fish tend to be more resistant or even benefit from the direct effects of ocean acidification, though the effects of ocean acidification are more subtle for these taxa. While physiological tipping points of the effects of ocean acidification either do not exist or are not well defined, their direct effects on organism physiology will have flow-on indirect effects. These indirect effects will cause ecological tipping points in the future through changes in competition, herbivory, and predation. Evidence for indirect effects and ecological change is mostly taken from benthic ecosystems in warm temperate–tropical locations in situ that have elevated CO2. Species abundances at these locations indicate a shift away from calcifying taxa and towards non-calcareous taxa at high-CO2 concentrations. For example, lower abundance of corals and coralline algae and higher covers of non-calcareous macroalgae, often turfing species, are often found at elevated CO2. However, there are some locations where only minor changes or no detectable changes occur. Where ecological tipping points do occur, it is usually at locations with naturally elevated mean pCO2 concentrations of 500 µatm or more, which also corresponds to just under that concentration where the direct physiological impacts of ocean acidification are detectable in the most sensitive taxa in laboratory research (coralline algae and corals). Collectively, the available data support the concern that ocean acidification will most likely cause ecological change in the near future in most benthic marine ecosystems, with tipping points in some ecosystems as low as 500 µatm pCO2. However, further research is required to more adequately quantify and model the extent of these impacts in order to accurately project future marine ecosystem tipping points under ocean acidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESD Ideas: Exoplanet, origins of life and biosphere researchers offer a perspective fundamental to ensuring humanity's future Observation-inferred resilience loss of the Amazon rainforest possibly due to internal climate variability A missing link in the carbon cycle: phytoplankton light absorption under RCP emission scenarios AMOC stability amid tipping ice sheets: the crucial role of rate and noise ESD Ideas: Positive tipping points towards global regenerative systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1