接受认识上的不确定性:雨水中污染物的风险评估方法

V. Pons, Merethe Strømberg, G. Blecken, Franz Tscheikner-Gratl, M. Viklander, T. Muthanna
{"title":"接受认识上的不确定性:雨水中污染物的风险评估方法","authors":"V. Pons, Merethe Strømberg, G. Blecken, Franz Tscheikner-Gratl, M. Viklander, T. Muthanna","doi":"10.2166/wst.2024.194","DOIUrl":null,"url":null,"abstract":"\n \n In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant's concentration. Such information can be used in a risk management context and to design smart monitoring campaigns.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"24 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embracing epistemic uncertainty: a risk evaluation method for pollutants in stormwater\",\"authors\":\"V. Pons, Merethe Strømberg, G. Blecken, Franz Tscheikner-Gratl, M. Viklander, T. Muthanna\",\"doi\":\"10.2166/wst.2024.194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant's concentration. Such information can be used in a risk management context and to design smart monitoring campaigns.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们发现新出现的污染物在本质上容易产生认识上的不确定性。我们还表明,目前用于污染物建模的不确定性量化方法几乎完全依赖于参数的不确定性,这不足以解决影响模型结构的认识不确定性问题。因此,我们建议对目前的污染物建模方法进行范式转换,增加一个明确考虑认识不确定性的术语。在概念验证中,我们使用这种方法研究了湿润天气排放过程中污染物波动(输入信息)的认识不确定性对污染物质量分布(输出分布)的影响。我们发现,波动范围会对输出分布的尾部产生负面影响。波动时间与排放量和浓度之间的高协方差有关,是影响输出分布的主要驱动因素。根据不同程度的认识不确定性,我们的方法有助于识别污染物浓度波动中的关键未知信息。这些信息可用于风险管理和设计智能监测活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Embracing epistemic uncertainty: a risk evaluation method for pollutants in stormwater
In this study, we show that pollutants of emerging concern are, by nature, prone to the emergence of epistemic uncertainty. We also show that the current uncertainty quantification methods used for pollutant modelling rely almost exclusively on parameter uncertainty, which is not adequate to tackle epistemic uncertainty affecting the model structure. We, therefore, suggest a paradigm shift in the current pollutant modelling approaches by adding a term explicitly accounting for epistemic uncertainties. In a proof-of-concept, we use this approach to investigate the impact of epistemic uncertainty in the fluctuation of pollutants during wet-weather discharge (input information) on the distribution of mass of pollutants (output distributions). We found that the range of variability negatively impacts the tail of output distributions. The fluctuation time, associated with high covariance between discharge and concentration, is a major driver for the output distributions. Adapting to different levels of epistemic uncertainty, our approach helps to identify critical unknown information in the fluctuation of pollutant's concentration. Such information can be used in a risk management context and to design smart monitoring campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1