{"title":"硅酸盐拉曼光谱计算中的结构谱关系","authors":"Mohammad Bagheri, Hannu-Pekka Komsa","doi":"10.1002/jrs.6686","DOIUrl":null,"url":null,"abstract":"<p>Silicate minerals have a rich structural variety consisting of silicon oxide clusters or networks of any dimensionality interdispersed with different types of elements, which is reflected in marked changes in the Raman spectra. Understanding how the changes in the Raman spectra are correlated with the atomic structure would be highly desirable for fast material identification and analysis. Extracting such trends from experimental spectra can be difficult owing to the uncertainties in the structural details of the samples and in ensuring consistency between measurements from different sources. Simulated spectra, however, avoid these problems, making them a good candidate for systematic studies. Here, we study the correlation between the structure and Raman spectral features of 179 silicates derived from a database of Raman spectra simulated using first-principles calculations. We investigate the spectral similarities with a specific emphasis on materials containing isolated 0D clusters in nesosilicate (SiO<sub>4</sub>), sorosilicate (Si<sub>2</sub>O<sub>7</sub>), and cyclosilicate (Si<sub>3</sub>O<sub>9</sub> and Si<sub>4</sub>O<sub>12</sub>) configurations. While trends identified in the previous reports can be confirmed, we find that the variations within each group of similar structural motifs tend to be larger than the changes across groups, and therefore, developing a reliable automated classification algorithm is likely to be challenging.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 10","pages":"1113-1123"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrs.6686","citationCount":"0","resultStr":"{\"title\":\"Structure–spectrum relationship in the calculated Raman spectra of silicates\",\"authors\":\"Mohammad Bagheri, Hannu-Pekka Komsa\",\"doi\":\"10.1002/jrs.6686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicate minerals have a rich structural variety consisting of silicon oxide clusters or networks of any dimensionality interdispersed with different types of elements, which is reflected in marked changes in the Raman spectra. Understanding how the changes in the Raman spectra are correlated with the atomic structure would be highly desirable for fast material identification and analysis. Extracting such trends from experimental spectra can be difficult owing to the uncertainties in the structural details of the samples and in ensuring consistency between measurements from different sources. Simulated spectra, however, avoid these problems, making them a good candidate for systematic studies. Here, we study the correlation between the structure and Raman spectral features of 179 silicates derived from a database of Raman spectra simulated using first-principles calculations. We investigate the spectral similarities with a specific emphasis on materials containing isolated 0D clusters in nesosilicate (SiO<sub>4</sub>), sorosilicate (Si<sub>2</sub>O<sub>7</sub>), and cyclosilicate (Si<sub>3</sub>O<sub>9</sub> and Si<sub>4</sub>O<sub>12</sub>) configurations. While trends identified in the previous reports can be confirmed, we find that the variations within each group of similar structural motifs tend to be larger than the changes across groups, and therefore, developing a reliable automated classification algorithm is likely to be challenging.</p>\",\"PeriodicalId\":16926,\"journal\":{\"name\":\"Journal of Raman Spectroscopy\",\"volume\":\"55 10\",\"pages\":\"1113-1123\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrs.6686\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Raman Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6686\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6686","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
Structure–spectrum relationship in the calculated Raman spectra of silicates
Silicate minerals have a rich structural variety consisting of silicon oxide clusters or networks of any dimensionality interdispersed with different types of elements, which is reflected in marked changes in the Raman spectra. Understanding how the changes in the Raman spectra are correlated with the atomic structure would be highly desirable for fast material identification and analysis. Extracting such trends from experimental spectra can be difficult owing to the uncertainties in the structural details of the samples and in ensuring consistency between measurements from different sources. Simulated spectra, however, avoid these problems, making them a good candidate for systematic studies. Here, we study the correlation between the structure and Raman spectral features of 179 silicates derived from a database of Raman spectra simulated using first-principles calculations. We investigate the spectral similarities with a specific emphasis on materials containing isolated 0D clusters in nesosilicate (SiO4), sorosilicate (Si2O7), and cyclosilicate (Si3O9 and Si4O12) configurations. While trends identified in the previous reports can be confirmed, we find that the variations within each group of similar structural motifs tend to be larger than the changes across groups, and therefore, developing a reliable automated classification algorithm is likely to be challenging.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.