{"title":"一种基于螺旋旋转轴的三电纳米发电机,可高效采集海洋静水压差能量","authors":"","doi":"10.1016/j.matre.2024.100280","DOIUrl":null,"url":null,"abstract":"<div><p>Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply, resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks. Here, we design a deep-sea differential-pressure triboelectric nanogenerator (DP-TENG) based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment. The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor, achieving efficient conversion of differential pressure energy. The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7 μA, the instantaneous current density can reach 0.69 μA cm<sup>−2</sup>, and the output performance can be improved by optimizing the spiral angle of the shaft. The DP-TENG can charge a 33 μF capacitor to 17.5 V within five working cycles. It can also power a digital calculator and light up 116 commercial power light-emitting diodes, demonstrating excellent output capability. With its simple structure, low production cost, and small form factor, the DP-TENG can be seamlessly integrated with underwater vehicles. The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging “smart ocean” and blue economy applications.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 3","pages":"Article 100280"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000508/pdfft?md5=025f870d79df10a10369c3e5d4938484&pid=1-s2.0-S2666935824000508-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential\",\"authors\":\"\",\"doi\":\"10.1016/j.matre.2024.100280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply, resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks. Here, we design a deep-sea differential-pressure triboelectric nanogenerator (DP-TENG) based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment. The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor, achieving efficient conversion of differential pressure energy. The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7 μA, the instantaneous current density can reach 0.69 μA cm<sup>−2</sup>, and the output performance can be improved by optimizing the spiral angle of the shaft. The DP-TENG can charge a 33 μF capacitor to 17.5 V within five working cycles. It can also power a digital calculator and light up 116 commercial power light-emitting diodes, demonstrating excellent output capability. With its simple structure, low production cost, and small form factor, the DP-TENG can be seamlessly integrated with underwater vehicles. The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging “smart ocean” and blue economy applications.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"4 3\",\"pages\":\"Article 100280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000508/pdfft?md5=025f870d79df10a10369c3e5d4938484&pid=1-s2.0-S2666935824000508-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential
Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply, resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks. Here, we design a deep-sea differential-pressure triboelectric nanogenerator (DP-TENG) based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment. The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor, achieving efficient conversion of differential pressure energy. The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7 μA, the instantaneous current density can reach 0.69 μA cm−2, and the output performance can be improved by optimizing the spiral angle of the shaft. The DP-TENG can charge a 33 μF capacitor to 17.5 V within five working cycles. It can also power a digital calculator and light up 116 commercial power light-emitting diodes, demonstrating excellent output capability. With its simple structure, low production cost, and small form factor, the DP-TENG can be seamlessly integrated with underwater vehicles. The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging “smart ocean” and blue economy applications.