Mahshid Mohammad Zadeh, Mazdak Arabi, Tyler Dell, Sybil Sharvelle
{"title":"市政规模应用的网络城市水文模型","authors":"Mahshid Mohammad Zadeh, Mazdak Arabi, Tyler Dell, Sybil Sharvelle","doi":"10.1016/j.envsoft.2024.106096","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive data and computational requirements limit the application of existing urban hydrology models at municipal scales. Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) is a web-based deployment of the SWMM model with decoupled hydrologic and hydraulic components to enable hydrologic assessment at the municipal and larger scales. This study comprehensively evaluates the performance validity of CLASIC for characterization of hydrologic responses against SWMM and observed data. Furthermore, global sensitivity analysis is used to explore the significance of hydrologic and hydraulic model parameters across spatial and temporal scales. CLASIC reliably represents the urban hydrological processes and accurately quantifies stream discharge at the municipal scale and temporal scales greater than the catchment's time of concentration. Notably, the computational requirements of CLASIC are substantially lower than those of SWMM as the catchment drainage area increases. The application of CLASIC for flood assessment may be conducted with careful examination of the estimated peak discharge at sub-daily timescales.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001579/pdfft?md5=bfde08ad47a859d1d079aaf584be5e63&pid=1-s2.0-S1364815224001579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A web-based urban hydrology model for municipal scale applications\",\"authors\":\"Mahshid Mohammad Zadeh, Mazdak Arabi, Tyler Dell, Sybil Sharvelle\",\"doi\":\"10.1016/j.envsoft.2024.106096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extensive data and computational requirements limit the application of existing urban hydrology models at municipal scales. Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) is a web-based deployment of the SWMM model with decoupled hydrologic and hydraulic components to enable hydrologic assessment at the municipal and larger scales. This study comprehensively evaluates the performance validity of CLASIC for characterization of hydrologic responses against SWMM and observed data. Furthermore, global sensitivity analysis is used to explore the significance of hydrologic and hydraulic model parameters across spatial and temporal scales. CLASIC reliably represents the urban hydrological processes and accurately quantifies stream discharge at the municipal scale and temporal scales greater than the catchment's time of concentration. Notably, the computational requirements of CLASIC are substantially lower than those of SWMM as the catchment drainage area increases. The application of CLASIC for flood assessment may be conducted with careful examination of the estimated peak discharge at sub-daily timescales.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001579/pdfft?md5=bfde08ad47a859d1d079aaf584be5e63&pid=1-s2.0-S1364815224001579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001579\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001579","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A web-based urban hydrology model for municipal scale applications
Extensive data and computational requirements limit the application of existing urban hydrology models at municipal scales. Community-enabled Lifecycle Analysis of Stormwater Infrastructure Costs (CLASIC) is a web-based deployment of the SWMM model with decoupled hydrologic and hydraulic components to enable hydrologic assessment at the municipal and larger scales. This study comprehensively evaluates the performance validity of CLASIC for characterization of hydrologic responses against SWMM and observed data. Furthermore, global sensitivity analysis is used to explore the significance of hydrologic and hydraulic model parameters across spatial and temporal scales. CLASIC reliably represents the urban hydrological processes and accurately quantifies stream discharge at the municipal scale and temporal scales greater than the catchment's time of concentration. Notably, the computational requirements of CLASIC are substantially lower than those of SWMM as the catchment drainage area increases. The application of CLASIC for flood assessment may be conducted with careful examination of the estimated peak discharge at sub-daily timescales.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.