水生浮萍(Spirodela polyrhiza L.)的比较基因组学和不寻常多胺氧化途径的证据

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2024-06-03 DOI:10.1016/j.cpb.2024.100359
Rakesh K. Upadhyay , Jonathan Shao , Grace E. Roberts , Autar K. Mattoo
{"title":"水生浮萍(Spirodela polyrhiza L.)的比较基因组学和不寻常多胺氧化途径的证据","authors":"Rakesh K. Upadhyay ,&nbsp;Jonathan Shao ,&nbsp;Grace E. Roberts ,&nbsp;Autar K. Mattoo","doi":"10.1016/j.cpb.2024.100359","DOIUrl":null,"url":null,"abstract":"<div><p>Polyamines (PA) cellular levels are maintained through a balance between synthesis and catabolism, achieved by two classes of enzymes polyamine oxidases (PAOs) and copper amine oxidases (CuAO). Here we investigated the occurrence, molecular evolution and role(s) of PAOs and CuAO gene families in aquatic duckweed and their comparison with other aquatic plants -sea eelgrass, bladderwort, and Lotus. We identified eight <em>bona fide</em> PAO genes (<em>SpPAO1–SpPAO8</em>) and one <em>SpCuAO1</em> in the greater duckweed genome from three genome assemblies. Interestingly, duckweed PAO genes increased their number through a tandem duplication event, while contrary to this CuAO genes were significantly lost to a single gene <em>SpCuAO1</em>. Phylogenetic analysis revealed that tandemly duplicated <em>SpPAO2–7</em> share close similarity to well-known terminal catabolism (TC) pathway PAO genes while <em>SpPAO1</em> and <em>SpPAO8</em> seem to segregate along with back conversion (BC) participating known PAO genes<em>,</em> suggesting that all tandem duplicated PAOs are involved in TC pathway which is contrary to known trend in land plants where CuAOs are mainly involved in TC pathway. Comparative transcript abundance studies indicated that all eight PAOs and one CuAO gene respond to multiple stresses and principal component analysis identifies <em>SpPAO4</em> as a highly active gene in response to multiple stresses. Results showed that oxidation of higher polyamines (SPD/SPM) through the TC pathway is diversified in duckweeds. Taken together this study reveals unique insights into the genomic losses and gains of polyamine metabolism possibly involved in achieving the structural and physiological adaptations required for aquatic lifestyle of duckweeds.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000410/pdfft?md5=157b38d3bb6644527023b07fb7511765&pid=1-s2.0-S2214662824000410-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative genomics and evidence for an unusual polyamine oxidation pathway in aquatic duckweed (Spirodela polyrhiza L.)\",\"authors\":\"Rakesh K. Upadhyay ,&nbsp;Jonathan Shao ,&nbsp;Grace E. Roberts ,&nbsp;Autar K. Mattoo\",\"doi\":\"10.1016/j.cpb.2024.100359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyamines (PA) cellular levels are maintained through a balance between synthesis and catabolism, achieved by two classes of enzymes polyamine oxidases (PAOs) and copper amine oxidases (CuAO). Here we investigated the occurrence, molecular evolution and role(s) of PAOs and CuAO gene families in aquatic duckweed and their comparison with other aquatic plants -sea eelgrass, bladderwort, and Lotus. We identified eight <em>bona fide</em> PAO genes (<em>SpPAO1–SpPAO8</em>) and one <em>SpCuAO1</em> in the greater duckweed genome from three genome assemblies. Interestingly, duckweed PAO genes increased their number through a tandem duplication event, while contrary to this CuAO genes were significantly lost to a single gene <em>SpCuAO1</em>. Phylogenetic analysis revealed that tandemly duplicated <em>SpPAO2–7</em> share close similarity to well-known terminal catabolism (TC) pathway PAO genes while <em>SpPAO1</em> and <em>SpPAO8</em> seem to segregate along with back conversion (BC) participating known PAO genes<em>,</em> suggesting that all tandem duplicated PAOs are involved in TC pathway which is contrary to known trend in land plants where CuAOs are mainly involved in TC pathway. Comparative transcript abundance studies indicated that all eight PAOs and one CuAO gene respond to multiple stresses and principal component analysis identifies <em>SpPAO4</em> as a highly active gene in response to multiple stresses. Results showed that oxidation of higher polyamines (SPD/SPM) through the TC pathway is diversified in duckweeds. Taken together this study reveals unique insights into the genomic losses and gains of polyamine metabolism possibly involved in achieving the structural and physiological adaptations required for aquatic lifestyle of duckweeds.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000410/pdfft?md5=157b38d3bb6644527023b07fb7511765&pid=1-s2.0-S2214662824000410-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多胺(PA)的细胞水平是通过多胺氧化酶(PAOs)和铜胺氧化酶(CuAO)这两类酶的合成和分解代谢之间的平衡来维持的。在此,我们研究了水生浮萍中 PAOs 和 CuAO 基因家族的出现、分子进化和作用,并将其与其他水生植物(海鳗草、膀胱草和莲花)进行了比较。我们从三个基因组装配中发现了大浮萍基因组中八个真正的 PAO 基因(SpPAO1-SpPAO8)和一个 SpCuAO1。有趣的是,浮萍的 PAO 基因通过串联复制事件增加了其数量,而与此相反,CuAO 基因却显著减少,只剩下一个 SpCuAO1 基因。系统发育分析表明,串联重复的 SpPAO2-7 与众所周知的末端分解(TC)途径 PAO 基因具有近似性,而 SpPAO1 和 SpPAO8 似乎与参与反向转换(BC)的已知 PAO 基因一起分离,这表明所有串联重复的 PAO 都参与了 TC 途径,这与陆生植物中 CuAO 主要参与 TC 途径的已知趋势相反。转录本丰度比较研究表明,所有八个 PAO 和一个 CuAO 基因都对多种胁迫做出了反应,主成分分析确定 SpPAO4 是对多种胁迫做出反应的高活性基因。结果表明,通过 TC 途径氧化高级多胺(SPD/SPM)在浮萍中具有多样性。总之,这项研究揭示了多胺代谢基因组损益的独特见解,多胺代谢可能参与实现浮萍水生生活方式所需的结构和生理适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative genomics and evidence for an unusual polyamine oxidation pathway in aquatic duckweed (Spirodela polyrhiza L.)

Polyamines (PA) cellular levels are maintained through a balance between synthesis and catabolism, achieved by two classes of enzymes polyamine oxidases (PAOs) and copper amine oxidases (CuAO). Here we investigated the occurrence, molecular evolution and role(s) of PAOs and CuAO gene families in aquatic duckweed and their comparison with other aquatic plants -sea eelgrass, bladderwort, and Lotus. We identified eight bona fide PAO genes (SpPAO1–SpPAO8) and one SpCuAO1 in the greater duckweed genome from three genome assemblies. Interestingly, duckweed PAO genes increased their number through a tandem duplication event, while contrary to this CuAO genes were significantly lost to a single gene SpCuAO1. Phylogenetic analysis revealed that tandemly duplicated SpPAO2–7 share close similarity to well-known terminal catabolism (TC) pathway PAO genes while SpPAO1 and SpPAO8 seem to segregate along with back conversion (BC) participating known PAO genes, suggesting that all tandem duplicated PAOs are involved in TC pathway which is contrary to known trend in land plants where CuAOs are mainly involved in TC pathway. Comparative transcript abundance studies indicated that all eight PAOs and one CuAO gene respond to multiple stresses and principal component analysis identifies SpPAO4 as a highly active gene in response to multiple stresses. Results showed that oxidation of higher polyamines (SPD/SPM) through the TC pathway is diversified in duckweeds. Taken together this study reveals unique insights into the genomic losses and gains of polyamine metabolism possibly involved in achieving the structural and physiological adaptations required for aquatic lifestyle of duckweeds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions Sustainable nitrogen solutions: Cyanobacteria-powered plant biotechnology for conservation and metabolite production Metabolomic analyses during chayote (Sechium edule var. virens levis) seed germination under the influence of growth regulators Arabidopsis B-BOX DOMAIN PROTEIN14/15/16 form a feedback loop with ELONGATED HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs to regulate hypocotyl elongation Genome-wide identification of TCP transcription factors and functional role of UrTCP4 in regulating terpenoid indole alkaloids biosynthesis in Uncaria rhynchophylla
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1