{"title":"用于提高薄壁零件车削精度的感应卡爪","authors":"","doi":"10.1016/j.cirp.2024.04.082","DOIUrl":null,"url":null,"abstract":"<div><p>In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 285-288"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0007850624000969/pdfft?md5=c1977d3aa572baa3d3920c6b8feeadb7&pid=1-s2.0-S0007850624000969-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensory chuck jaw for enhancing accuracy in turning thin‐walled parts\",\"authors\":\"\",\"doi\":\"10.1016/j.cirp.2024.04.082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 285-288\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000969/pdfft?md5=c1977d3aa572baa3d3920c6b8feeadb7&pid=1-s2.0-S0007850624000969-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007850624000969\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000969","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Sensory chuck jaw for enhancing accuracy in turning thin‐walled parts
In turning thin-walled parts, machining errors and deviations from the aspired workpiece shape occur due to influences of the workpiece clamping and elastic deformations of the workpiece caused by clamping forces. This paper introduces a newly designed sensor integrated chuck jaw for turning applications, which allows for an on-line monitoring of the actual clamping forces and an in-process prediction of shape deviations of the machined parts. The design and characteristics of the sensory jaw are described and its monitoring capability is validated in turning experiments. Correlations of sensor data with workpiece shape deviations and models for error prediction are analyzed.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.