双稳态复合板的动力学

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-06-03 DOI:10.1016/j.ijnonlinmec.2024.104767
Paulomi Mukherjee , Aghna Mukherjee , A. Arockiarajan , Shaikh Faruque Ali
{"title":"双稳态复合板的动力学","authors":"Paulomi Mukherjee ,&nbsp;Aghna Mukherjee ,&nbsp;A. Arockiarajan ,&nbsp;Shaikh Faruque Ali","doi":"10.1016/j.ijnonlinmec.2024.104767","DOIUrl":null,"url":null,"abstract":"<div><p>Nonlinear asymmetric bi-stable composite laminates, characterized by multistable nature and rich dynamics, have seen increased application potential recently. This has necessitated a detailed dynamical analysis of bistable laminates. In this manuscript, the nonlinear behaviour of asymmetric <span><math><mrow><mo>[</mo><msub><mrow><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mn>9</mn><msub><mrow><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></math></span> bistable laminates with free–free boundary conditions is investigated through simulations and experimental observations. A refined 17 degrees of freedom (dofs) analytical model is developed, fusing Raleigh–Ritz with Hamilton’s principle to obtain the governing nonlinear equations of motion. A nonlinear finite element (FE) model is also developed using ABAQUS®. Experiments are conducted by clamping the midpoint of the plate with a shaker and then exciting it. The composite laminate shows many intricate dynamics, such as sub-harmonic and super-harmonic oscillations, intra-well oscillation (periodic and chaotic), and inter-well snap-through (periodic and chaotic snap-through) prominently. The primary focus of this paper is to highlight the potential of bistable laminates by elucidating the existence of large-amplitude vibrations over a broad frequency range under different input and system parameters. Further, it has been observed that attached mass plays a significant role in modifying the response bandwidth for cross-well oscillation for a given excitation frequency and amplitude. Hence fine-tuning of masses can excite different nonlinear dynamic characteristics of the laminate, making it applicable in different engineering fields.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of bistable composite plates\",\"authors\":\"Paulomi Mukherjee ,&nbsp;Aghna Mukherjee ,&nbsp;A. Arockiarajan ,&nbsp;Shaikh Faruque Ali\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nonlinear asymmetric bi-stable composite laminates, characterized by multistable nature and rich dynamics, have seen increased application potential recently. This has necessitated a detailed dynamical analysis of bistable laminates. In this manuscript, the nonlinear behaviour of asymmetric <span><math><mrow><mo>[</mo><msub><mrow><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mn>9</mn><msub><mrow><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></mrow></math></span> bistable laminates with free–free boundary conditions is investigated through simulations and experimental observations. A refined 17 degrees of freedom (dofs) analytical model is developed, fusing Raleigh–Ritz with Hamilton’s principle to obtain the governing nonlinear equations of motion. A nonlinear finite element (FE) model is also developed using ABAQUS®. Experiments are conducted by clamping the midpoint of the plate with a shaker and then exciting it. The composite laminate shows many intricate dynamics, such as sub-harmonic and super-harmonic oscillations, intra-well oscillation (periodic and chaotic), and inter-well snap-through (periodic and chaotic snap-through) prominently. The primary focus of this paper is to highlight the potential of bistable laminates by elucidating the existence of large-amplitude vibrations over a broad frequency range under different input and system parameters. Further, it has been observed that attached mass plays a significant role in modifying the response bandwidth for cross-well oscillation for a given excitation frequency and amplitude. Hence fine-tuning of masses can excite different nonlinear dynamic characteristics of the laminate, making it applicable in different engineering fields.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002074622400132X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002074622400132X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

非线性非对称双稳态复合材料层压板具有多稳定性和丰富的动态特性,其应用潜力近年来不断增加。因此,有必要对双稳态层压板进行详细的动力学分析。在本手稿中,我们通过模拟和实验观察研究了具有自由无边界条件的非对称 [0n/90n] 双稳态层压板的非线性行为。通过融合 Raleigh-Ritz 与 Hamilton 原理,建立了一个精炼的 17 自由度 (dofs) 分析模型,从而获得了支配非线性运动方程。此外,还使用 ABAQUS® 建立了一个非线性有限元 (FE) 模型。实验方法是用振动器夹住板的中点,然后对其进行激励。复合材料层压板表现出许多复杂的动力学特性,如次谐波和超谐波振荡、井内振荡(周期性和混沌振荡)以及井间突跳(周期性和混沌突跳)。本文的主要重点是阐明双稳态层压板在不同输入和系统参数下,在宽频率范围内存在大振幅振动,从而突出双稳态层压板的潜力。此外,我们还观察到,在给定的激励频率和振幅下,附着质量在改变横井振荡响应带宽方面起着重要作用。因此,对质量进行微调可激发层压板的不同非线性动态特性,使其适用于不同的工程领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamics of bistable composite plates

Nonlinear asymmetric bi-stable composite laminates, characterized by multistable nature and rich dynamics, have seen increased application potential recently. This has necessitated a detailed dynamical analysis of bistable laminates. In this manuscript, the nonlinear behaviour of asymmetric [0n/90n] bistable laminates with free–free boundary conditions is investigated through simulations and experimental observations. A refined 17 degrees of freedom (dofs) analytical model is developed, fusing Raleigh–Ritz with Hamilton’s principle to obtain the governing nonlinear equations of motion. A nonlinear finite element (FE) model is also developed using ABAQUS®. Experiments are conducted by clamping the midpoint of the plate with a shaker and then exciting it. The composite laminate shows many intricate dynamics, such as sub-harmonic and super-harmonic oscillations, intra-well oscillation (periodic and chaotic), and inter-well snap-through (periodic and chaotic snap-through) prominently. The primary focus of this paper is to highlight the potential of bistable laminates by elucidating the existence of large-amplitude vibrations over a broad frequency range under different input and system parameters. Further, it has been observed that attached mass plays a significant role in modifying the response bandwidth for cross-well oscillation for a given excitation frequency and amplitude. Hence fine-tuning of masses can excite different nonlinear dynamic characteristics of the laminate, making it applicable in different engineering fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Cascaded robust fixed-time terminal sliding mode control for uncertain cartpole systems with incremental nonlinear dynamic inversion Study on nonlinear relaxation properties of composite solid propellant Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1