带有热量产生的径向收缩盘上 MHD 混合纳米流体流动的灵敏度分析

Najiyah Safwa Khashi’ie, Mohd Fariduddin Mukhtar, Nurul Amira Zainal, Khairum Hamzah, Iskandar Waini, Abdul Rahman Mohd Kasim, Ioan Pop
{"title":"带有热量产生的径向收缩盘上 MHD 混合纳米流体流动的灵敏度分析","authors":"Najiyah Safwa Khashi’ie, Mohd Fariduddin Mukhtar, Nurul Amira Zainal, Khairum Hamzah, Iskandar Waini, Abdul Rahman Mohd Kasim, Ioan Pop","doi":"10.37934/arfmts.117.2.116130","DOIUrl":null,"url":null,"abstract":"This work features the numerical computation and statistical analysis (response surface and sensitivity) for the flow and thermal progress of an axisymmetric copper-alumina/water hybrid nanofluid subjected to a permeable shrinking disk. The simultaneous factors of magnetic field (MHD), heat generation and suction parameter in the heat transfer development and flow characteristic are observed. The flow and energy equations are mathematically developed based on the boundary layer assumptions. These equations are then simplified with the aids of the similarity variables. The numerical results are then generated by the bvp4c solver in the Matlab software. The dual solutions are possible and exist up to a separation value upon the inclusion of suction effect. The increment of heat generation parameter from 0% to 1% reduces the heat transfer rate for all values of the stretching/shrinking parameter. For the response surface analysis, the responses (skin friction coefficient and heat transfer rate) are analyzed for three factors (magnetic, suction, heat generation) and three magnitudes (low, medium, high). Based on this analysis, the magnetic and suction parameters provide a significant effect on the skin friction with p-values < 0.05. Meanwhile, for the heat transfer coefficient, all factors give significant impact with zero p-values. Meanwhile, the sensitivity analysis reveals that the suction parameter has higher sensitivity to the heat transfer as compared to the magnetic and heat generation parameter. Even though these parameters being less sensitive, their influence on heat transfer remains statistically significant.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis of MHD Hybrid Nanofluid Flow over a Radially Shrinking Disk with Heat Generation\",\"authors\":\"Najiyah Safwa Khashi’ie, Mohd Fariduddin Mukhtar, Nurul Amira Zainal, Khairum Hamzah, Iskandar Waini, Abdul Rahman Mohd Kasim, Ioan Pop\",\"doi\":\"10.37934/arfmts.117.2.116130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work features the numerical computation and statistical analysis (response surface and sensitivity) for the flow and thermal progress of an axisymmetric copper-alumina/water hybrid nanofluid subjected to a permeable shrinking disk. The simultaneous factors of magnetic field (MHD), heat generation and suction parameter in the heat transfer development and flow characteristic are observed. The flow and energy equations are mathematically developed based on the boundary layer assumptions. These equations are then simplified with the aids of the similarity variables. The numerical results are then generated by the bvp4c solver in the Matlab software. The dual solutions are possible and exist up to a separation value upon the inclusion of suction effect. The increment of heat generation parameter from 0% to 1% reduces the heat transfer rate for all values of the stretching/shrinking parameter. For the response surface analysis, the responses (skin friction coefficient and heat transfer rate) are analyzed for three factors (magnetic, suction, heat generation) and three magnitudes (low, medium, high). Based on this analysis, the magnetic and suction parameters provide a significant effect on the skin friction with p-values < 0.05. Meanwhile, for the heat transfer coefficient, all factors give significant impact with zero p-values. Meanwhile, the sensitivity analysis reveals that the suction parameter has higher sensitivity to the heat transfer as compared to the magnetic and heat generation parameter. Even though these parameters being less sensitive, their influence on heat transfer remains statistically significant.\",\"PeriodicalId\":37460,\"journal\":{\"name\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arfmts.117.2.116130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.117.2.116130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究对轴对称铜氧化铝/水混合纳米流体在可渗透收缩盘作用下的流动和热过程进行了数值计算和统计分析(响应面和灵敏度)。观察了磁场(MHD)、发热和吸力参数在传热发展和流动特性中的同时作用。基于边界层假设,对流动和能量方程进行了数学计算。然后借助相似变量对这些方程进行简化。然后通过 Matlab 软件中的 bvp4c 求解器生成数值结果。在包含吸力效应的情况下,双解是可能的,并且可以达到一个分离值。在所有拉伸/收缩参数值下,发热参数从 0% 增加到 1% 会降低传热率。在响应面分析中,对三个因素(磁力、吸力、发热)和三个量级(低、中、高)的响应(表皮摩擦系数和传热速率)进行了分析。分析结果表明,磁力和吸力参数对皮肤摩擦有显著影响,P 值小于 0.05。同时,对于传热系数,所有因素都有显著影响,且 p 值为零。同时,敏感性分析表明,与磁参数和发热参数相比,吸力参数对传热的敏感性更高。尽管这些参数的敏感性较低,但它们对传热的影响在统计学上仍然显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity Analysis of MHD Hybrid Nanofluid Flow over a Radially Shrinking Disk with Heat Generation
This work features the numerical computation and statistical analysis (response surface and sensitivity) for the flow and thermal progress of an axisymmetric copper-alumina/water hybrid nanofluid subjected to a permeable shrinking disk. The simultaneous factors of magnetic field (MHD), heat generation and suction parameter in the heat transfer development and flow characteristic are observed. The flow and energy equations are mathematically developed based on the boundary layer assumptions. These equations are then simplified with the aids of the similarity variables. The numerical results are then generated by the bvp4c solver in the Matlab software. The dual solutions are possible and exist up to a separation value upon the inclusion of suction effect. The increment of heat generation parameter from 0% to 1% reduces the heat transfer rate for all values of the stretching/shrinking parameter. For the response surface analysis, the responses (skin friction coefficient and heat transfer rate) are analyzed for three factors (magnetic, suction, heat generation) and three magnitudes (low, medium, high). Based on this analysis, the magnetic and suction parameters provide a significant effect on the skin friction with p-values < 0.05. Meanwhile, for the heat transfer coefficient, all factors give significant impact with zero p-values. Meanwhile, the sensitivity analysis reveals that the suction parameter has higher sensitivity to the heat transfer as compared to the magnetic and heat generation parameter. Even though these parameters being less sensitive, their influence on heat transfer remains statistically significant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Synchronous Heat and Mass Transmission in MHD Ohmic Dissipative Viscous Fluid Flow Cavorted by an Upright Surface with Chemical Reaction Energy and Exergy Analysis of R600a as a Substitute for R134a in Automotive Air Conditioning System Exploration of Timber Dry and Wet Rot Defects in Buildings: Types, Causes, Effects and Mitigation Methods Investigating the Effects of Air Bubbles Injection Technique on the Cooling Time of Warm Drinking Water Preparation of TFC-PES Reverse Osmosis Hollow Fibre Membrane for Brackish Water Desalination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1