队列控制问题的近似线性规划

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Operations Research Pub Date : 2024-06-01 DOI:10.1016/j.cor.2024.106711
Saied Samiedaluie , Dan Zhang , Rui Zhang
{"title":"队列控制问题的近似线性规划","authors":"Saied Samiedaluie ,&nbsp;Dan Zhang ,&nbsp;Rui Zhang","doi":"10.1016/j.cor.2024.106711","DOIUrl":null,"url":null,"abstract":"<div><p>Admission decisions for loss systems accessed by multiple customer classes are a classical queueing control problem with a wide variety of applications. When a server is available, the decision is whether to admit an arriving customer and collect a lump-sum revenue. The system can be modeled as a continuous-time infinite-horizon dynamic program, but suffers from the curse of dimensionality when different customer classes have different service rates. We use approximate linear programming to solve the problem under three approximation architectures: affine, separable piecewise linear and finite affine. The finite affine approximation is a recently proposed generalization of the affine approximation, which allows for non-stationary parameters. For both affine and finite affine approximations, we derive equivalent, but more compact, formulations that can be efficiently solved. We propose a column generation algorithm for the separable piecewise linear approximation. Our numerical results show that the finite affine approximation can obtain the tightest bounds for 75% of the instances among the three approximations. Especially, when the number of servers is large and/or the load on the system is high, the finite affine approximation always achieves the tightest bounds. Regarding policy performance, the finite affine approximation has the best performance on average compared to the other two approximations and the achievable performance region method (Bertsimaset al., 1994, Kumar and Kumar, 1994). Furthermore, the finite affine approximation is 4 to 5 orders of magnitude faster than the achievable performance region method and the separable piecewise linear approximation for large-scale instances. Therefore, considering bounds, policy performance, and computational efficiency, the finite affine approximation emerges as a competitive approximation architecture for the class of problems studied here.</p></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate linear programming for a queueing control problem\",\"authors\":\"Saied Samiedaluie ,&nbsp;Dan Zhang ,&nbsp;Rui Zhang\",\"doi\":\"10.1016/j.cor.2024.106711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Admission decisions for loss systems accessed by multiple customer classes are a classical queueing control problem with a wide variety of applications. When a server is available, the decision is whether to admit an arriving customer and collect a lump-sum revenue. The system can be modeled as a continuous-time infinite-horizon dynamic program, but suffers from the curse of dimensionality when different customer classes have different service rates. We use approximate linear programming to solve the problem under three approximation architectures: affine, separable piecewise linear and finite affine. The finite affine approximation is a recently proposed generalization of the affine approximation, which allows for non-stationary parameters. For both affine and finite affine approximations, we derive equivalent, but more compact, formulations that can be efficiently solved. We propose a column generation algorithm for the separable piecewise linear approximation. Our numerical results show that the finite affine approximation can obtain the tightest bounds for 75% of the instances among the three approximations. Especially, when the number of servers is large and/or the load on the system is high, the finite affine approximation always achieves the tightest bounds. Regarding policy performance, the finite affine approximation has the best performance on average compared to the other two approximations and the achievable performance region method (Bertsimaset al., 1994, Kumar and Kumar, 1994). Furthermore, the finite affine approximation is 4 to 5 orders of magnitude faster than the achievable performance region method and the separable piecewise linear approximation for large-scale instances. Therefore, considering bounds, policy performance, and computational efficiency, the finite affine approximation emerges as a competitive approximation architecture for the class of problems studied here.</p></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824001837\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824001837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由多个客户类别访问的损失系统的准入决策是一个经典的排队控制问题,应用广泛。当服务器可用时,需要决定是否接纳到达的客户并收取一次性收入。该系统可以建模为一个连续时间无限视距动态程序,但当不同客户类别具有不同的服务速率时,就会受到维度诅咒的影响。我们使用近似线性规划来解决三种近似结构下的问题:仿射、可分离的片断线性和有限仿射。有限仿射近似是最近提出的仿射近似的一般化,它允许非平稳参数。对于仿射近似和有限仿射近似,我们都推导出了可高效求解的等价但更紧凑的公式。我们为可分离的片断线性近似提出了一种列生成算法。我们的数值结果表明,在三种近似方法中,有限仿射近似方法可以为 75% 的实例获得最严格的约束。特别是在服务器数量多和/或系统负载高的情况下,有限仿射近似总是能获得最严格的边界。在策略性能方面,与其他两种近似方法和可实现性能区域方法相比,有限仿射近似方法的平均性能最好(Bertsimaset al.)此外,对于大规模实例,有限仿射近似比可实现性能区域法和可分离片断线性近似快 4 到 5 个数量级。因此,考虑到边界、策略性能和计算效率,有限仿射近似是本文所研究的这一类问题中具有竞争力的近似结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate linear programming for a queueing control problem

Admission decisions for loss systems accessed by multiple customer classes are a classical queueing control problem with a wide variety of applications. When a server is available, the decision is whether to admit an arriving customer and collect a lump-sum revenue. The system can be modeled as a continuous-time infinite-horizon dynamic program, but suffers from the curse of dimensionality when different customer classes have different service rates. We use approximate linear programming to solve the problem under three approximation architectures: affine, separable piecewise linear and finite affine. The finite affine approximation is a recently proposed generalization of the affine approximation, which allows for non-stationary parameters. For both affine and finite affine approximations, we derive equivalent, but more compact, formulations that can be efficiently solved. We propose a column generation algorithm for the separable piecewise linear approximation. Our numerical results show that the finite affine approximation can obtain the tightest bounds for 75% of the instances among the three approximations. Especially, when the number of servers is large and/or the load on the system is high, the finite affine approximation always achieves the tightest bounds. Regarding policy performance, the finite affine approximation has the best performance on average compared to the other two approximations and the achievable performance region method (Bertsimaset al., 1994, Kumar and Kumar, 1994). Furthermore, the finite affine approximation is 4 to 5 orders of magnitude faster than the achievable performance region method and the separable piecewise linear approximation for large-scale instances. Therefore, considering bounds, policy performance, and computational efficiency, the finite affine approximation emerges as a competitive approximation architecture for the class of problems studied here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
期刊最新文献
Corporate risk stratification through an interpretable autoencoder-based model Re-direction in queueing networks with two customer types: The inter-departure analysis Multi objective optimization of human–robot collaboration: A case study in aerospace assembly line A deep reinforcement learning hyperheuristic for the covering tour problem with varying coverage Arc-flow formulation and branch-and-price-and-cut algorithm for the bin-packing problem with fragile objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1