超声触发功能水凝胶促进多阶段骨再生

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL Biomaterials Pub Date : 2024-06-03 DOI:10.1016/j.biomaterials.2024.122650
Wenyi Zheng , Li Ma , Xueshi Luo , Renhao Xu , Zhiying Cao , Yanni He , Yanzhou Chang , Yuanyuan You , Tianfeng Chen , Hongmei Liu
{"title":"超声触发功能水凝胶促进多阶段骨再生","authors":"Wenyi Zheng ,&nbsp;Li Ma ,&nbsp;Xueshi Luo ,&nbsp;Renhao Xu ,&nbsp;Zhiying Cao ,&nbsp;Yanni He ,&nbsp;Yanzhou Chang ,&nbsp;Yuanyuan You ,&nbsp;Tianfeng Chen ,&nbsp;Hongmei Liu","doi":"10.1016/j.biomaterials.2024.122650","DOIUrl":null,"url":null,"abstract":"<div><p>The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction <em>in vitro</em> and <em>in vivo</em>. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C–C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca<sup>2+</sup> for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.</p></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-triggered functional hydrogel promotes multistage bone regeneration\",\"authors\":\"Wenyi Zheng ,&nbsp;Li Ma ,&nbsp;Xueshi Luo ,&nbsp;Renhao Xu ,&nbsp;Zhiying Cao ,&nbsp;Yanni He ,&nbsp;Yanzhou Chang ,&nbsp;Yuanyuan You ,&nbsp;Tianfeng Chen ,&nbsp;Hongmei Liu\",\"doi\":\"10.1016/j.biomaterials.2024.122650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction <em>in vitro</em> and <em>in vivo</em>. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C–C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca<sup>2+</sup> for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.</p></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961224001844\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224001844","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨间充质干细胞(BMSCs)在骨再生的炎症期和修复期的物理和化学特性导致其功能失调,是骨再生失败的原因之一。为了满足 BMSCs 在不同阶段的时空需求,设计能对外界刺激做出反应的生物相容性材料,改善 BMSCs 在炎症阶段的迁移、减少增殖阶段的凋亡以及扫清分化阶段的障碍,是多阶段修复骨缺损的有效策略。在这项研究中,我们设计了一种级联反应功能复合水凝胶(Gel@Eb/HA)来调节 BMSCs 在体外和体内的功能障碍。在炎症阶段,Gel@Eb/HA通过上调趋化因子(C-C基序)配体5(CCL5)的表达改善了BMSCs的迁移。超声波(US)可引发依布硒的快速释放,从而消除活性氧(ROS)在BMSCs中的积累,并逆转氧化应激下的细胞凋亡。持续的 US 处理加速了材料的降解,从而为 BMSCs 的成骨分化提供了 Ca2+。总之,我们的研究凸显了由 US 控制的智能系统的前景,它为解决多阶段骨修复的复杂性提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound-triggered functional hydrogel promotes multistage bone regeneration

The dysfunction of bone mesenchymal stem cells (BMSCs), caused by the physical and chemical properties of the inflammatory and repair phases of bone regeneration, contributes to the failure of bone regeneration. To meet the spatiotemporal needs of BMSCs in different phases, designing biocompatible materials that respond to external stimuli, improve migration in the inflammatory phase, reduce apoptosis in the proliferative phase, and clear the hurdle in the differentiation phase of BMSCs is an effective strategy for multistage repair of bone defects. In this study, we designed a cascade-response functional composite hydrogel (Gel@Eb/HA) to regulate BMSCs dysfunction in vitro and in vivo. Gel@Eb/HA improved the migration of BMSCs by upregulating the expression of chemokine (C–C motif) ligand 5 (CCL5) during the inflammatory phase. Ultrasound (US) triggered the rapid release of Ebselen (Eb), eliminating the accumulation of reactive oxygen species (ROS) in BMSCs, and reversing apoptosis under oxidative stress. Continued US treatment accelerated the degradation of the materials, thereby providing Ca2+ for the osteogenic differentiation of BMSCs. Altogether, our study highlights the prospects of US-controlled intelligent system, that provides a novel strategy for addressing the complexities of multistage bone repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
期刊最新文献
Multilayered Hydrogel Scaffold Construct with Native Tissue Matched Elastic Modulus: A Regenerative Microenvironment for Urethral Scar-free Healing Nano-enabled regulation of DNA damage in tumor cells to enhance neoantigen-based pancreatic cancer immunotherapy. Targeted reprogramming of tumor-associated macrophages for overcoming glioblastoma resistance to chemotherapy and immunotherapy. Injectable bioadhesive hydrogel as a local nanomedicine depot for targeted regulation of inflammation and ferroptosis in rheumatoid arthritis Camouflaging nanoreactor traverse the blood-brain barrier to catalyze redox cascade for synergistic therapy of glioblastoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1