不同冠状动脉瘤形态对血栓形成和血液动力学影响的数值调查:对比研究。

IF 3 3区 医学 Q2 BIOPHYSICS Biomechanics and Modeling in Mechanobiology Pub Date : 2024-06-06 DOI:10.1007/s10237-024-01859-x
Kaiyue Zhang, Pan Song, Yan Pei, Xinhui Liu, Min Dai, Jun Wen
{"title":"不同冠状动脉瘤形态对血栓形成和血液动力学影响的数值调查:对比研究。","authors":"Kaiyue Zhang,&nbsp;Pan Song,&nbsp;Yan Pei,&nbsp;Xinhui Liu,&nbsp;Min Dai,&nbsp;Jun Wen","doi":"10.1007/s10237-024-01859-x","DOIUrl":null,"url":null,"abstract":"<div><p>Coronary artery aneurysms (CAAs) are morphologically classified as saccular and fusiform. There is still a great deal of clinical controversy as to which types of CAA are more likely to cause thrombosis. Therefore, the main objective of this study was to evaluate the trend of thrombus growth in CAAs with different morphologies and to assess the risk of possible long-term complications based on hemodynamic parameters. Utilizing computed tomography angiography (CTA) data from eight healthy coronary arteries, two distinct morphologies of coronary artery aneurysms (CAAs) were reconstructed. Distribution of four wall shear stress (WSS)-based indicators and three helicity indicators was analyzed in this study. Meanwhile, a thrombus growth model was introduced to analyze the thrombus formation in CAAs with different morphologies. The research results showed the distribution of most WSS indicators between saccular and fusiform CAAs was not statistically significant. However, due to the presence of a more pronounced helical flow pattern, irregular helical flow structure and longer time of flow stagnation in saccular CAAs during the cardiac cycle, the mean and maximum relative residence time (RRT) were significantly higher in saccular CAAs than in fusiform CAAs (<i>P</i> &lt; 0.05). This may increase the risk of saccular coronary arteries leading to aneurysmal dilatation or even rupture. Although the two CAAs had similar rates of thrombosis, fusiform CAAs may more early cause obstruction of the main coronary flow channel where the aneurysm is located due to thrombosis growth. Thus, the risk of thrombosis in fusiform coronary aneurysms may warrant greater clinical concern.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 5","pages":"1631 - 1647"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on the impact of different coronary aneurysms morphologies on thrombus formation and hemodynamics: a comparative study\",\"authors\":\"Kaiyue Zhang,&nbsp;Pan Song,&nbsp;Yan Pei,&nbsp;Xinhui Liu,&nbsp;Min Dai,&nbsp;Jun Wen\",\"doi\":\"10.1007/s10237-024-01859-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coronary artery aneurysms (CAAs) are morphologically classified as saccular and fusiform. There is still a great deal of clinical controversy as to which types of CAA are more likely to cause thrombosis. Therefore, the main objective of this study was to evaluate the trend of thrombus growth in CAAs with different morphologies and to assess the risk of possible long-term complications based on hemodynamic parameters. Utilizing computed tomography angiography (CTA) data from eight healthy coronary arteries, two distinct morphologies of coronary artery aneurysms (CAAs) were reconstructed. Distribution of four wall shear stress (WSS)-based indicators and three helicity indicators was analyzed in this study. Meanwhile, a thrombus growth model was introduced to analyze the thrombus formation in CAAs with different morphologies. The research results showed the distribution of most WSS indicators between saccular and fusiform CAAs was not statistically significant. However, due to the presence of a more pronounced helical flow pattern, irregular helical flow structure and longer time of flow stagnation in saccular CAAs during the cardiac cycle, the mean and maximum relative residence time (RRT) were significantly higher in saccular CAAs than in fusiform CAAs (<i>P</i> &lt; 0.05). This may increase the risk of saccular coronary arteries leading to aneurysmal dilatation or even rupture. Although the two CAAs had similar rates of thrombosis, fusiform CAAs may more early cause obstruction of the main coronary flow channel where the aneurysm is located due to thrombosis growth. Thus, the risk of thrombosis in fusiform coronary aneurysms may warrant greater clinical concern.</p></div>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\"23 5\",\"pages\":\"1631 - 1647\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10237-024-01859-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01859-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉瘤(CAA)在形态上分为囊状和纺锤形两种。关于哪种类型的 CAA 更容易导致血栓形成,临床上仍存在很大争议。因此,本研究的主要目的是评估不同形态的 CAA 中血栓的生长趋势,并根据血液动力学参数评估可能出现长期并发症的风险。利用八条健康冠状动脉的计算机断层扫描血管造影(CTA)数据,重建了两种不同形态的冠状动脉瘤(CAA)。该研究分析了基于壁剪应力(WSS)的四个指标和三个螺旋度指标的分布情况。同时,引入血栓生长模型分析不同形态的 CAA 中血栓的形成。研究结果表明,大多数WSS指标在囊状和纺锤形CAA之间的分布无统计学意义。然而,由于囊状 CAA 存在更明显的螺旋流动模式、不规则的螺旋流动结构以及在心动周期中更长的停滞时间,囊状 CAA 的平均相对滞留时间(RRT)和最大相对滞留时间(RRT)均显著高于纺锤形 CAA(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation on the impact of different coronary aneurysms morphologies on thrombus formation and hemodynamics: a comparative study

Coronary artery aneurysms (CAAs) are morphologically classified as saccular and fusiform. There is still a great deal of clinical controversy as to which types of CAA are more likely to cause thrombosis. Therefore, the main objective of this study was to evaluate the trend of thrombus growth in CAAs with different morphologies and to assess the risk of possible long-term complications based on hemodynamic parameters. Utilizing computed tomography angiography (CTA) data from eight healthy coronary arteries, two distinct morphologies of coronary artery aneurysms (CAAs) were reconstructed. Distribution of four wall shear stress (WSS)-based indicators and three helicity indicators was analyzed in this study. Meanwhile, a thrombus growth model was introduced to analyze the thrombus formation in CAAs with different morphologies. The research results showed the distribution of most WSS indicators between saccular and fusiform CAAs was not statistically significant. However, due to the presence of a more pronounced helical flow pattern, irregular helical flow structure and longer time of flow stagnation in saccular CAAs during the cardiac cycle, the mean and maximum relative residence time (RRT) were significantly higher in saccular CAAs than in fusiform CAAs (P < 0.05). This may increase the risk of saccular coronary arteries leading to aneurysmal dilatation or even rupture. Although the two CAAs had similar rates of thrombosis, fusiform CAAs may more early cause obstruction of the main coronary flow channel where the aneurysm is located due to thrombosis growth. Thus, the risk of thrombosis in fusiform coronary aneurysms may warrant greater clinical concern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
期刊最新文献
A review on the mucus dynamics in the human respiratory airway. The mechanical response of polymeric gyroid structures in an optimised orthotic insole. Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study. A non-intrusive reduced-order model for finite element analysis of implant positioning in total hip replacements. Comparison and identification of human coronary plaques with/without erosion using patient-specific optical coherence tomography-based fluid-structure interaction models: a pilot study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1