Hongjuan Han, Haiyan Li, Lu Wang, Yong Zhu, Haoqing Guan, Jingzhi Yao, Wenqian Xiao, Bo Li, Xiaoling Liao
{"title":"制备用于组织工程应用的可高压灭菌和可注射的蚕丝纤维冷凝胶。","authors":"Hongjuan Han, Haiyan Li, Lu Wang, Yong Zhu, Haoqing Guan, Jingzhi Yao, Wenqian Xiao, Bo Li, Xiaoling Liao","doi":"10.1002/mabi.202400038","DOIUrl":null,"url":null,"abstract":"<p>A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from <i>Bombyx mori</i> silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications\",\"authors\":\"Hongjuan Han, Haiyan Li, Lu Wang, Yong Zhu, Haoqing Guan, Jingzhi Yao, Wenqian Xiao, Bo Li, Xiaoling Liao\",\"doi\":\"10.1002/mabi.202400038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from <i>Bombyx mori</i> silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400038\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications
A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from Bombyx mori silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.