Yufeng Liu, Mengbi Zhang, Lu Zeng, Yanhong Lai, Songzhao Wu, Xiaoyan Su
{"title":"沃格宁通过抑制 TLR4 介导的 JAK/STAT/AIM2 信号通路,上调 SOCS3 以减轻糖尿病肾病的损伤。","authors":"Yufeng Liu, Mengbi Zhang, Lu Zeng, Yanhong Lai, Songzhao Wu, Xiaoyan Su","doi":"10.1186/s10020-024-00845-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury.</p><p><strong>Methods: </strong>Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules.</p><p><strong>Results: </strong>HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries.</p><p><strong>Conclusion: </strong>Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155057/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wogonin upregulates SOCS3 to alleviate the injury in Diabetic Nephropathy by inhibiting TLR4-mediated JAK/STAT/AIM2 signaling pathway.\",\"authors\":\"Yufeng Liu, Mengbi Zhang, Lu Zeng, Yanhong Lai, Songzhao Wu, Xiaoyan Su\",\"doi\":\"10.1186/s10020-024-00845-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury.</p><p><strong>Methods: </strong>Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules.</p><p><strong>Results: </strong>HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries.</p><p><strong>Conclusion: </strong>Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155057/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00845-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00845-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Wogonin upregulates SOCS3 to alleviate the injury in Diabetic Nephropathy by inhibiting TLR4-mediated JAK/STAT/AIM2 signaling pathway.
Background: Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury.
Methods: Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules.
Results: HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries.
Conclusion: Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.