Xingguang Luo, Qiao Mao, Jing Shi, Xiaoping Wang, Chiang-Shan R Li
{"title":"神经精神疾病和神经退行性疾病的普塔门灰质体积。","authors":"Xingguang Luo, Qiao Mao, Jing Shi, Xiaoping Wang, Chiang-Shan R Li","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Putamen is enriched with dopamine and associated with dopamine-related phenotypes including many neuropsychiatric and neurodegenerative disorders that manifest with motor impairment, impulsive behavior, and cognitive deficits. The gray matter volume of the putamen is age-dependent and genetically controlled. In most neuropsychiatric and neurodegenerative disorders, including Parkinson's spectrum disorders, Huntington's disease, dementia with Lewy bodies, Alzheimer's disease, multiple sclerosis, attention deficit hyperactivity disorder, developmental dyslexia, and major depression, the putamen volume is significantly reduced. On the other hand, in individuals with bipolar disorder, schizophrenia spectrum disorders, especially neuroleptics-medicated patients with schizophrenia, autism spectrum disorders, obsessive-compulsive spectrum disorders, and cocaine/amphetamine dependence, the putamen volume is significantly enlarged. Therefore, the putamen volume may serve as a structural neural marker for many neuropsychiatric and neurodegenerative disorders and a predictor of treatment outcomes in individuals afflicted with these conditions. We provided an overview of the genetic bases of putamen volume and explored potential mechanisms whereby altered putamen volume manifests in these neuropsychiatric and neurodegenerative conditions, with a specific focus on dopaminergic processes.</p>","PeriodicalId":92861,"journal":{"name":"World journal of psychiatry and mental health research","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders.\",\"authors\":\"Xingguang Luo, Qiao Mao, Jing Shi, Xiaoping Wang, Chiang-Shan R Li\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Putamen is enriched with dopamine and associated with dopamine-related phenotypes including many neuropsychiatric and neurodegenerative disorders that manifest with motor impairment, impulsive behavior, and cognitive deficits. The gray matter volume of the putamen is age-dependent and genetically controlled. In most neuropsychiatric and neurodegenerative disorders, including Parkinson's spectrum disorders, Huntington's disease, dementia with Lewy bodies, Alzheimer's disease, multiple sclerosis, attention deficit hyperactivity disorder, developmental dyslexia, and major depression, the putamen volume is significantly reduced. On the other hand, in individuals with bipolar disorder, schizophrenia spectrum disorders, especially neuroleptics-medicated patients with schizophrenia, autism spectrum disorders, obsessive-compulsive spectrum disorders, and cocaine/amphetamine dependence, the putamen volume is significantly enlarged. Therefore, the putamen volume may serve as a structural neural marker for many neuropsychiatric and neurodegenerative disorders and a predictor of treatment outcomes in individuals afflicted with these conditions. We provided an overview of the genetic bases of putamen volume and explored potential mechanisms whereby altered putamen volume manifests in these neuropsychiatric and neurodegenerative conditions, with a specific focus on dopaminergic processes.</p>\",\"PeriodicalId\":92861,\"journal\":{\"name\":\"World journal of psychiatry and mental health research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of psychiatry and mental health research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of psychiatry and mental health research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/5/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders.
Putamen is enriched with dopamine and associated with dopamine-related phenotypes including many neuropsychiatric and neurodegenerative disorders that manifest with motor impairment, impulsive behavior, and cognitive deficits. The gray matter volume of the putamen is age-dependent and genetically controlled. In most neuropsychiatric and neurodegenerative disorders, including Parkinson's spectrum disorders, Huntington's disease, dementia with Lewy bodies, Alzheimer's disease, multiple sclerosis, attention deficit hyperactivity disorder, developmental dyslexia, and major depression, the putamen volume is significantly reduced. On the other hand, in individuals with bipolar disorder, schizophrenia spectrum disorders, especially neuroleptics-medicated patients with schizophrenia, autism spectrum disorders, obsessive-compulsive spectrum disorders, and cocaine/amphetamine dependence, the putamen volume is significantly enlarged. Therefore, the putamen volume may serve as a structural neural marker for many neuropsychiatric and neurodegenerative disorders and a predictor of treatment outcomes in individuals afflicted with these conditions. We provided an overview of the genetic bases of putamen volume and explored potential mechanisms whereby altered putamen volume manifests in these neuropsychiatric and neurodegenerative conditions, with a specific focus on dopaminergic processes.