海蜘蛛 Phoxichilidium femoratum(Rathke,1799 年)的雌性生殖系统

IF 1.7 3区 农林科学 Q2 ENTOMOLOGY Arthropod Structure & Development Pub Date : 2024-06-07 DOI:10.1016/j.asd.2024.101370
Maria Petrova, Ekaterina Bogomolova
{"title":"海蜘蛛 Phoxichilidium femoratum(Rathke,1799 年)的雌性生殖系统","authors":"Maria Petrova,&nbsp;Ekaterina Bogomolova","doi":"10.1016/j.asd.2024.101370","DOIUrl":null,"url":null,"abstract":"<div><p>Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk – specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of <em>P</em>. <em>femoratum</em>, although their specific functions and prevalence in other sea spider species remain unclear.</p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799)\",\"authors\":\"Maria Petrova,&nbsp;Ekaterina Bogomolova\",\"doi\":\"10.1016/j.asd.2024.101370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk – specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of <em>P</em>. <em>femoratum</em>, although their specific functions and prevalence in other sea spider species remain unclear.</p></div>\",\"PeriodicalId\":55461,\"journal\":{\"name\":\"Arthropod Structure & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod Structure & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1467803924000409\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467803924000409","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海蜘蛛(Pycnogonida)是海洋螯足类。目前基于分子数据的海蜘蛛系统发育仍然不确定,并且与传统的形态学观点相矛盾。要解决这一矛盾,了解其内部解剖结构至关重要。海蜘蛛的生殖系统有望成为系统发育信号的来源,但我们在这方面的知识还很有限。本研究首次在超微结构水平上描述了海蜘蛛的整个雌性生殖系统。我们根据卵巢壁超微结构和卵母细胞发育阶段的分布,提出了更详细的卵巢功能区域划分建议。减数分裂开始于胚芽鞘,卵母细胞通过运输区进入卵黄囊。卵黄发生期的卵母细胞穿过卵黄壁,通过柄(特化细胞)与卵黄壁相连。早期卵黄发生期的卵母细胞中会出现 Balbiani 体,但随后就会消失。玻璃体包膜、卵黄和受精包膜的形成涉及功能各异的 RER 囊泡。该研究还发现生殖窦是一个独立的血球室,可提高卵黄形成卵母细胞附近的营养浓度。此外,研究还描述了股蜘蛛雌体中的输卵管和生殖腺,但其具体功能及其在其他海蜘蛛物种中的分布情况仍不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The female reproductive system of the sea spider Phoxichilidium femoratum (Rathke, 1799)

Sea spiders (Pycnogonida) are marine chelicerates. Current pycnogonid phylogeny based on molecular data remains uncertain and contradicts traditional morphological perspectives. To resolve this conflict, understanding their inner anatomy is crucial. The reproductive system of sea spiders shows promise as a source of phylogenetic signal, yet our knowledge in this area is limited. This study presents the first description of the whole female reproductive system of a sea spider at the ultrastructural level. We suggest a more detailed functional regionalization of the ovary based on the ovarian wall ultrastructure and distribution of oocyte developmental stages. Meiosis begins in the germarium, and oocytes progress to the vitellarium through a transportational zone. Vitellogenic oocytes extend through the vitellarium wall, connected with it by a stalk – specialized cells. Balbiani bodies are present in early vitellogenic oocytes but dissipate later. The formation of the vitelline envelope, yolk, and fertilization envelope involves functionally diverse RER vesicles. The study also identifies a reproductive sinus as a separate haemocoel compartment that may enhance nutrient concentration near vitellogenic oocytes. Additionally, oviduct and gonopore glands are described in the female of P. femoratum, although their specific functions and prevalence in other sea spider species remain unclear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
10.00%
发文量
54
审稿时长
60 days
期刊介绍: Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.
期刊最新文献
Morphology and distribution of antennal sensilla in five species of solitary bees (Hymenoptera, Apoidea) Ultrastructure of the larval rectum of the scorpionfly Panorpa liui (Mecoptera: Panorpidae) Coevolution of spermatozoa and spermathecae in Lonchopteridae (Diptera) Genomics investigation of the potentially invasive firefly Photinus signaticollis Blanchard 1845: Complete mitochondrial genome, multigene phylogenies and obtention of the luciferase and luciferin-regenerating genes Morphology of the sting apparatus in sapygid wasps of the subfamily Sapyginae (Hymenoptera: Sapygidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1