用于无人机网络边缘辅助计算的具有组合特性和之字形解码的低开销矢量编码

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-06-06 DOI:10.1111/coin.12642
Mingjun Dai, Ronghao Huang, Jinjin Wang, Bingchun Li
{"title":"用于无人机网络边缘辅助计算的具有组合特性和之字形解码的低开销矢量编码","authors":"Mingjun Dai,&nbsp;Ronghao Huang,&nbsp;Jinjin Wang,&nbsp;Bingchun Li","doi":"10.1111/coin.12642","DOIUrl":null,"url":null,"abstract":"<p>Codes that possess combination property (CP) and zigzag decoding (ZD) simultaneously (CP-ZD) has broad application into edge aided distributed systems, including distributed storage, coded distributed computing (CDC), and CDC-structured distributed training. Existing CP-ZD code designs are based on scalar code, where one node stores exactly one encoded packet. The drawback is that the induced overhead is high. In order to significantly reduce the overhead, vector CP-ZD codes are designed, where vector means the number of stored encoded packets in one node is extended from one to multiple. More specifically, in detailed code construction, cyclic shift is proposed, and the shifts are carefully designed for cases that each node stores two, three, and four packets, respectively. Comparisons show that the overhead is reduced significantly.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low overhead vector codes with combination property and zigzag decoding for edge-aided computing in UAV network\",\"authors\":\"Mingjun Dai,&nbsp;Ronghao Huang,&nbsp;Jinjin Wang,&nbsp;Bingchun Li\",\"doi\":\"10.1111/coin.12642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Codes that possess combination property (CP) and zigzag decoding (ZD) simultaneously (CP-ZD) has broad application into edge aided distributed systems, including distributed storage, coded distributed computing (CDC), and CDC-structured distributed training. Existing CP-ZD code designs are based on scalar code, where one node stores exactly one encoded packet. The drawback is that the induced overhead is high. In order to significantly reduce the overhead, vector CP-ZD codes are designed, where vector means the number of stored encoded packets in one node is extended from one to multiple. More specifically, in detailed code construction, cyclic shift is proposed, and the shifts are carefully designed for cases that each node stores two, three, and four packets, respectively. Comparisons show that the overhead is reduced significantly.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12642\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12642","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

同时具有组合特性(CP)和之字形解码(ZD)的编码(CP-ZD)在边缘辅助分布式系统中有着广泛的应用,包括分布式存储、编码分布式计算(CDC)和 CDC 结构分布式训练。现有的 CP-ZD 代码设计基于标量代码,即一个节点存储一个编码数据包。其缺点是引起的开销很大。为了大幅降低开销,我们设计了矢量 CP-ZD 代码,其中矢量表示一个节点存储的编码数据包数量从一个扩展到多个。更具体地说,在详细的编码构造中,提出了循环移位,并针对每个节点分别存储两个、三个和四个数据包的情况精心设计了移位。比较显示,开销显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low overhead vector codes with combination property and zigzag decoding for edge-aided computing in UAV network

Codes that possess combination property (CP) and zigzag decoding (ZD) simultaneously (CP-ZD) has broad application into edge aided distributed systems, including distributed storage, coded distributed computing (CDC), and CDC-structured distributed training. Existing CP-ZD code designs are based on scalar code, where one node stores exactly one encoded packet. The drawback is that the induced overhead is high. In order to significantly reduce the overhead, vector CP-ZD codes are designed, where vector means the number of stored encoded packets in one node is extended from one to multiple. More specifically, in detailed code construction, cyclic shift is proposed, and the shifts are carefully designed for cases that each node stores two, three, and four packets, respectively. Comparisons show that the overhead is reduced significantly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1