{"title":"流行病预报谬误","authors":"P. L. Krapivsky, S. Redner","doi":"10.1038/s44260-024-00007-x","DOIUrl":null,"url":null,"abstract":"We introduce a simple multiplicative model to describe the temporal behavior and the ultimate outcome of an epidemic. Our model accounts, in a minimalist way, for the competing influences of imposing public-health restrictions when the epidemic is severe, and relaxing restrictions when the epidemic is waning. Our primary results are that different instances of an epidemic with identical starting points have disparate outcomes and each epidemic temporal history is strongly fluctuating.","PeriodicalId":501707,"journal":{"name":"npj Complexity","volume":" ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44260-024-00007-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Epidemic forecast follies\",\"authors\":\"P. L. Krapivsky, S. Redner\",\"doi\":\"10.1038/s44260-024-00007-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a simple multiplicative model to describe the temporal behavior and the ultimate outcome of an epidemic. Our model accounts, in a minimalist way, for the competing influences of imposing public-health restrictions when the epidemic is severe, and relaxing restrictions when the epidemic is waning. Our primary results are that different instances of an epidemic with identical starting points have disparate outcomes and each epidemic temporal history is strongly fluctuating.\",\"PeriodicalId\":501707,\"journal\":{\"name\":\"npj Complexity\",\"volume\":\" \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44260-024-00007-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44260-024-00007-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44260-024-00007-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a simple multiplicative model to describe the temporal behavior and the ultimate outcome of an epidemic. Our model accounts, in a minimalist way, for the competing influences of imposing public-health restrictions when the epidemic is severe, and relaxing restrictions when the epidemic is waning. Our primary results are that different instances of an epidemic with identical starting points have disparate outcomes and each epidemic temporal history is strongly fluctuating.