{"title":"锂介导合成中的溶剂效应","authors":"Xiyang Cai, Junliang Zhang","doi":"10.1038/s41560-024-01538-2","DOIUrl":null,"url":null,"abstract":"Electrochemical ammonia (NH3) synthesis is a promising alternative to the Haber–Bosch process, but higher-performing systems are needed. Now, researchers realize long-term continuous NH3 electrosynthesis and production of high fractions of gas-phase NH3 by employing a chain ether as solvent, marking an important practical step forward.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent effects in Li-mediated synthesis\",\"authors\":\"Xiyang Cai, Junliang Zhang\",\"doi\":\"10.1038/s41560-024-01538-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical ammonia (NH3) synthesis is a promising alternative to the Haber–Bosch process, but higher-performing systems are needed. Now, researchers realize long-term continuous NH3 electrosynthesis and production of high fractions of gas-phase NH3 by employing a chain ether as solvent, marking an important practical step forward.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01538-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01538-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electrochemical ammonia (NH3) synthesis is a promising alternative to the Haber–Bosch process, but higher-performing systems are needed. Now, researchers realize long-term continuous NH3 electrosynthesis and production of high fractions of gas-phase NH3 by employing a chain ether as solvent, marking an important practical step forward.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.