{"title":"树木生物多样性的功能和系统发育维度揭示了独特的地理模式","authors":"Andrea Paz, Thomas W. Crowther, Daniel S. Maynard","doi":"10.1111/geb.13877","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Quantify tree functional and phylogenetic richness and divergence at the global scale, and explore the drivers underpinning these biogeographic patterns.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Trees.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using global tree occurrence data, we outlined species' observed ranges using individual alpha hulls to obtain per-pixel tree species composition at a 0.83-degree resolution. Using eight traits from a recent tree-trait database and a vascular-plant phylogeny we computed and mapped four pixel-level biodiversity indices, including two metrics related to richness: phylogenetic richness and functional richness, and two related to divergence: mean pairwise phylogenetic distance and Rao's quadratic entropy. To account for the effect of species richness, we also calculated standardized effect sizes accounting for richness for each pixel. We then explored the relations between richness and divergence and the latitudinal patterns of divergence both globally and across biomes. Finally, we used a random forest modelling approach to test for drivers of the different dimensions of diversity in trees.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In contrast to the latitudinal gradient in species richness, functional and phylogenetic divergence both peak in mid-latitude systems, exhibiting the highest values in temperate ecosystems and lowest values in boreal and tropical forests. This result holds for functional divergence when removing gymnosperms but the peak flattens for phylogenetic divergence. Phylogenetic richness is consistently lower than expected given the number of species, whereas functional richness has higher-than-expected values at mid-latitudes, mimicking functional divergence patterns. When considering the drivers of these diversity patterns, temperature and historical speciation rates consistently emerge as the strongest forces driving divergence, with negligible effects of human influence, soils or historical climate stability.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Collectively, these results reveal unique similarities and disparities across biomes that are not apparent in any single dimension of biodiversity, highlighting the importance of considering multiple aspects of biodiversity in the management of natural ecosystems.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 9","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13877","citationCount":"0","resultStr":"{\"title\":\"Functional and phylogenetic dimensions of tree biodiversity reveal unique geographic patterns\",\"authors\":\"Andrea Paz, Thomas W. Crowther, Daniel S. Maynard\",\"doi\":\"10.1111/geb.13877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Quantify tree functional and phylogenetic richness and divergence at the global scale, and explore the drivers underpinning these biogeographic patterns.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Trees.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Using global tree occurrence data, we outlined species' observed ranges using individual alpha hulls to obtain per-pixel tree species composition at a 0.83-degree resolution. Using eight traits from a recent tree-trait database and a vascular-plant phylogeny we computed and mapped four pixel-level biodiversity indices, including two metrics related to richness: phylogenetic richness and functional richness, and two related to divergence: mean pairwise phylogenetic distance and Rao's quadratic entropy. To account for the effect of species richness, we also calculated standardized effect sizes accounting for richness for each pixel. We then explored the relations between richness and divergence and the latitudinal patterns of divergence both globally and across biomes. Finally, we used a random forest modelling approach to test for drivers of the different dimensions of diversity in trees.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In contrast to the latitudinal gradient in species richness, functional and phylogenetic divergence both peak in mid-latitude systems, exhibiting the highest values in temperate ecosystems and lowest values in boreal and tropical forests. This result holds for functional divergence when removing gymnosperms but the peak flattens for phylogenetic divergence. Phylogenetic richness is consistently lower than expected given the number of species, whereas functional richness has higher-than-expected values at mid-latitudes, mimicking functional divergence patterns. When considering the drivers of these diversity patterns, temperature and historical speciation rates consistently emerge as the strongest forces driving divergence, with negligible effects of human influence, soils or historical climate stability.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Collectively, these results reveal unique similarities and disparities across biomes that are not apparent in any single dimension of biodiversity, highlighting the importance of considering multiple aspects of biodiversity in the management of natural ecosystems.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 9\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13877\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13877\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13877","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Functional and phylogenetic dimensions of tree biodiversity reveal unique geographic patterns
Aim
Quantify tree functional and phylogenetic richness and divergence at the global scale, and explore the drivers underpinning these biogeographic patterns.
Location
Global.
Time Period
Present.
Major Taxa Studied
Trees.
Methods
Using global tree occurrence data, we outlined species' observed ranges using individual alpha hulls to obtain per-pixel tree species composition at a 0.83-degree resolution. Using eight traits from a recent tree-trait database and a vascular-plant phylogeny we computed and mapped four pixel-level biodiversity indices, including two metrics related to richness: phylogenetic richness and functional richness, and two related to divergence: mean pairwise phylogenetic distance and Rao's quadratic entropy. To account for the effect of species richness, we also calculated standardized effect sizes accounting for richness for each pixel. We then explored the relations between richness and divergence and the latitudinal patterns of divergence both globally and across biomes. Finally, we used a random forest modelling approach to test for drivers of the different dimensions of diversity in trees.
Results
In contrast to the latitudinal gradient in species richness, functional and phylogenetic divergence both peak in mid-latitude systems, exhibiting the highest values in temperate ecosystems and lowest values in boreal and tropical forests. This result holds for functional divergence when removing gymnosperms but the peak flattens for phylogenetic divergence. Phylogenetic richness is consistently lower than expected given the number of species, whereas functional richness has higher-than-expected values at mid-latitudes, mimicking functional divergence patterns. When considering the drivers of these diversity patterns, temperature and historical speciation rates consistently emerge as the strongest forces driving divergence, with negligible effects of human influence, soils or historical climate stability.
Main Conclusions
Collectively, these results reveal unique similarities and disparities across biomes that are not apparent in any single dimension of biodiversity, highlighting the importance of considering multiple aspects of biodiversity in the management of natural ecosystems.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.