物种划界 4.0:综合分类学与人工智能的结合。

IF 16.7 1区 生物学 Q1 ECOLOGY Trends in ecology & evolution Pub Date : 2024-08-01 Epub Date: 2024-06-06 DOI:10.1016/j.tree.2023.11.002
Kevin Karbstein, Lara Kösters, Ladislav Hodač, Martin Hofmann, Elvira Hörandl, Salvatore Tomasello, Natascha D Wagner, Brent C Emerson, Dirk C Albach, Stefan Scheu, Sven Bradler, Jan de Vries, Iker Irisarri, He Li, Pamela Soltis, Patrick Mäder, Jana Wäldchen
{"title":"物种划界 4.0:综合分类学与人工智能的结合。","authors":"Kevin Karbstein, Lara Kösters, Ladislav Hodač, Martin Hofmann, Elvira Hörandl, Salvatore Tomasello, Natascha D Wagner, Brent C Emerson, Dirk C Albach, Stefan Scheu, Sven Bradler, Jan de Vries, Iker Irisarri, He Li, Pamela Soltis, Patrick Mäder, Jana Wäldchen","doi":"10.1016/j.tree.2023.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"771-784"},"PeriodicalIF":16.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species delimitation 4.0: integrative taxonomy meets artificial intelligence.\",\"authors\":\"Kevin Karbstein, Lara Kösters, Ladislav Hodač, Martin Hofmann, Elvira Hörandl, Salvatore Tomasello, Natascha D Wagner, Brent C Emerson, Dirk C Albach, Stefan Scheu, Sven Bradler, Jan de Vries, Iker Irisarri, He Li, Pamela Soltis, Patrick Mäder, Jana Wäldchen\",\"doi\":\"10.1016/j.tree.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\" \",\"pages\":\"771-784\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2023.11.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2023.11.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然物种是生物研究的核心单位,但基因组学的最新发现让人们意识到,由于仅以形态学为基础的区域性物种描述,我们所说的物种可能是没有根据的实体。这尤其适用于以杂交、多倍体或无性繁殖等复杂进化过程为特征的类群。在此,当前综合分类学(遗传学/基因组学+形态学+生态学等)所面临的挑战变得显而易见:不同的物种概念、缺乏通用特征/标记、缺少针对复杂进化过程的适当分析工具,以及高度主观的排序和数据集融合。现在,在统一的物种概念下,综合分类学与人工智能相结合,可以实现自动特征学习和数据整合,从而减少物种划分中的主观性。这种方法可能会加速修订和揭示真核生物的生物多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Species delimitation 4.0: integrative taxonomy meets artificial intelligence.

Although species are central units for biological research, recent findings in genomics are raising awareness that what we call species can be ill-founded entities due to solely morphology-based, regional species descriptions. This particularly applies to groups characterized by intricate evolutionary processes such as hybridization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy (genetics/genomics + morphology + ecology, etc.) become apparent: different favored species concepts, lack of universal characters/markers, missing appropriate analytical tools for intricate evolutionary processes, and highly subjective ranking and fusion of datasets. Now, integrative taxonomy combined with artificial intelligence under a unified species concept can enable automated feature learning and data integration, and thus reduce subjectivity in species delimitation. This approach will likely accelerate revising and unraveling eukaryotic biodiversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in ecology & evolution
Trends in ecology & evolution 生物-进化生物学
CiteScore
26.50
自引率
3.00%
发文量
178
审稿时长
6-12 weeks
期刊介绍: Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.
期刊最新文献
Water provisioning shapes carnivore community structure. Describing functional diversity of communities from environmental DNA. Mind the lag: understanding genetic extinction debt for conservation. Heat-tolerant corals thrive outside ocean hotspots. Removing institutional barriers to long-term fieldwork is critical for advancing ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1