Zhixiang Hu , Xinyi Guo , Ziteng Li , Zhiqiang Meng , Shenglin Huang
{"title":"源自转座元件的新抗原--癌症免疫疗法的隐藏宝藏。","authors":"Zhixiang Hu , Xinyi Guo , Ziteng Li , Zhiqiang Meng , Shenglin Huang","doi":"10.1016/j.bbcan.2024.189126","DOIUrl":null,"url":null,"abstract":"<div><p>Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.</p></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 5","pages":"Article 189126"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neoantigens derived from transposable elements – A hidden treasure for cancer immunotherapy\",\"authors\":\"Zhixiang Hu , Xinyi Guo , Ziteng Li , Zhiqiang Meng , Shenglin Huang\",\"doi\":\"10.1016/j.bbcan.2024.189126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.</p></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1879 5\",\"pages\":\"Article 189126\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X2400057X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X2400057X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The neoantigens derived from transposable elements – A hidden treasure for cancer immunotherapy
Neoantigen-based therapy is a promising approach that selectively activates the immune system of the host to recognize and eradicate cancer cells. Preliminary clinical trials have validated the feasibility, safety, and immunogenicity of personalized neoantigen-directed vaccines, enhancing their effectiveness and broad applicability in immunotherapy. While many ongoing oncological trials concentrate on neoantigens derived from mutations, these targets do not consistently provoke an immune response in all patients harboring the mutations. Additionally, tumors like ovarian cancer, which have a low tumor mutational burden (TMB), may be less amenable to mutation-based neoantigen therapies. Recent advancements in next-generation sequencing and bioinformatics have uncovered a rich source of neoantigens from non-canonical RNAs associated with transposable elements (TEs). Considering the substantial presence of TEs in the human genome and the proven immunogenicity of TE-derived neoantigens in various tumor types, this review investigates the latest findings on TE-derived neoantigens, examining their clinical implications, challenges, and unique advantages in enhancing tumor immunotherapy.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.