Ernie N. Bañares , Muhammad Shafqat Mehboob , Abdul Rahim Khan , Jennifer C. Cacal
{"title":"利用 WEAP 模型预测气候变化和城市化的水文响应:菲律宾比科尔河流域主要流域案例研究","authors":"Ernie N. Bañares , Muhammad Shafqat Mehboob , Abdul Rahim Khan , Jennifer C. Cacal","doi":"10.1016/j.ejrh.2024.101846","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><p>Bicol River Basin, Philippines</p></div><div><h3>Study focus</h3><p>The study investigated the impact of climate change and urbanization on water resources in the Philippines. It used Water Evaluation and Planning (WEAP) software and climate forecasts from eight Global Circulation Models (GCMs) to assess the nation's water balance, focusing on two sensitive watersheds: Libmanan-Pulantuna (LPW) and Quinali (QW). The study projects water availability in these areas by creating climate-urbanization scenarios. Furthermore, our endeavor aims to provide insight into the complexities of hydrological processes within traditionally under-observed regions, serving as a blueprint for future environmental planning and sustainable water management in the Philippines and beyond.</p></div><div><h3><em>New hydrological insights</em></h3><p>The study's simulated streamflow matches observed data (R<sup>2</sup>: 0.70–0.85, NSE: 0.57–0.67) and indicates warming trends and variable precipitation in both watersheds. Rising water demand in domestic and industrial sectors contrasts with a decline in agriculture due to land conversion. QW faces increased water demands from urbanization, while LPW has lower unmet water demand. Low Land Decline scenarios indicate consistent water scarcity in agriculture, while High Land Decline scenarios predict a decrease by 2100. Urbanization significantly impacts future water stress more than climate change, with reduced agricultural land generally associated with lower water stress. Conversely, climate change exacerbates unmet demand issues in domestic and industrial development cases. Due to diminishing agricultural land, both watersheds are expected to transition from water-deficient to water-surplus regions by the end of the century. However, immediate action is crucial to address current water demands, particularly in the severely water-deficient Quinali Watershed.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824001940/pdfft?md5=c624130bafa8071d041c7e13c048715f&pid=1-s2.0-S2214581824001940-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Projecting hydrological response to climate change and urbanization using WEAP model: A case study for the main watersheds of Bicol River Basin, Philippines\",\"authors\":\"Ernie N. Bañares , Muhammad Shafqat Mehboob , Abdul Rahim Khan , Jennifer C. Cacal\",\"doi\":\"10.1016/j.ejrh.2024.101846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><p>Bicol River Basin, Philippines</p></div><div><h3>Study focus</h3><p>The study investigated the impact of climate change and urbanization on water resources in the Philippines. It used Water Evaluation and Planning (WEAP) software and climate forecasts from eight Global Circulation Models (GCMs) to assess the nation's water balance, focusing on two sensitive watersheds: Libmanan-Pulantuna (LPW) and Quinali (QW). The study projects water availability in these areas by creating climate-urbanization scenarios. Furthermore, our endeavor aims to provide insight into the complexities of hydrological processes within traditionally under-observed regions, serving as a blueprint for future environmental planning and sustainable water management in the Philippines and beyond.</p></div><div><h3><em>New hydrological insights</em></h3><p>The study's simulated streamflow matches observed data (R<sup>2</sup>: 0.70–0.85, NSE: 0.57–0.67) and indicates warming trends and variable precipitation in both watersheds. Rising water demand in domestic and industrial sectors contrasts with a decline in agriculture due to land conversion. QW faces increased water demands from urbanization, while LPW has lower unmet water demand. Low Land Decline scenarios indicate consistent water scarcity in agriculture, while High Land Decline scenarios predict a decrease by 2100. Urbanization significantly impacts future water stress more than climate change, with reduced agricultural land generally associated with lower water stress. Conversely, climate change exacerbates unmet demand issues in domestic and industrial development cases. Due to diminishing agricultural land, both watersheds are expected to transition from water-deficient to water-surplus regions by the end of the century. However, immediate action is crucial to address current water demands, particularly in the severely water-deficient Quinali Watershed.</p></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214581824001940/pdfft?md5=c624130bafa8071d041c7e13c048715f&pid=1-s2.0-S2214581824001940-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824001940\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824001940","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Projecting hydrological response to climate change and urbanization using WEAP model: A case study for the main watersheds of Bicol River Basin, Philippines
Study region
Bicol River Basin, Philippines
Study focus
The study investigated the impact of climate change and urbanization on water resources in the Philippines. It used Water Evaluation and Planning (WEAP) software and climate forecasts from eight Global Circulation Models (GCMs) to assess the nation's water balance, focusing on two sensitive watersheds: Libmanan-Pulantuna (LPW) and Quinali (QW). The study projects water availability in these areas by creating climate-urbanization scenarios. Furthermore, our endeavor aims to provide insight into the complexities of hydrological processes within traditionally under-observed regions, serving as a blueprint for future environmental planning and sustainable water management in the Philippines and beyond.
New hydrological insights
The study's simulated streamflow matches observed data (R2: 0.70–0.85, NSE: 0.57–0.67) and indicates warming trends and variable precipitation in both watersheds. Rising water demand in domestic and industrial sectors contrasts with a decline in agriculture due to land conversion. QW faces increased water demands from urbanization, while LPW has lower unmet water demand. Low Land Decline scenarios indicate consistent water scarcity in agriculture, while High Land Decline scenarios predict a decrease by 2100. Urbanization significantly impacts future water stress more than climate change, with reduced agricultural land generally associated with lower water stress. Conversely, climate change exacerbates unmet demand issues in domestic and industrial development cases. Due to diminishing agricultural land, both watersheds are expected to transition from water-deficient to water-surplus regions by the end of the century. However, immediate action is crucial to address current water demands, particularly in the severely water-deficient Quinali Watershed.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.