{"title":"土层结构各向异性对偏心和倾斜荷载下土工合成材料加固地基承载力的影响","authors":"Suraparb Keawsawasvong , Hessam Fathipour , Payam Zanganeh Ranjbar , Meghdad Payan , Pitthaya Jamsawang","doi":"10.1016/j.sandf.2024.101479","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to explore the significant impact of soil fabric anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded shallow foundations overlying a geosynthetic-reinforced granular deposit. For this purpose, the well-established lower bound theorems of limit analysis (LA) in conjunction with the finite elements (FE) formulations and second-order cone programming (SOCP) are exploited to perform the bearing capacity estimations. The consideration of the soil mass’s inherently anisotropic response in the granular layer involves the utilization of distinct internal friction angles in various directions. The lower bound FELA framework adopted in this study incorporates both the pull-out and tensile mechanisms of failure in the reinforcement layer. The marked contribution of soil inherent anisotropy to the impacts of ultimate tensile strength (<span><math><mrow><msub><mi>T</mi><mi>u</mi></msub></mrow></math></span>) and embedment depth (<span><math><mrow><mi>u</mi></mrow></math></span>) of the geosynthetic reinforcement on the failure mechanism, bearing capacity ratio (<em>BCR</em>), and failure envelope of the overlying obliquely/eccentrically strip footing is rigorously examined and discussed. It is generally concluded that for a given embedment depth, failure envelopes of the surface footing in both <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>H</mi></mrow></math></span> and <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>M</mi></mrow></math></span> planes shrink appreciably with the increase in the soil anisotropy ratio as well as the decrease in the geosynthetic ultimate tensile strength. Moreover, the influence of soil inherent anisotropy on the overall bearing capacity of shallow foundations is more evident in the case of using strong reinforcement compared to the weak geosynthetic. The findings of this investigation demonstrate that overlooking the soil inherently anisotropic behaviour in the numerical analysis of shallow foundations would give rise to undesirable non-conservative and precarious designs.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003808062400057X/pdfft?md5=5330ceea9a6760e700fe8c98f2b715c9&pid=1-s2.0-S003808062400057X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of soil fabric anisotropy on the bearing capacity of geosynthetic-reinforced foundations under eccentric and inclined loadings\",\"authors\":\"Suraparb Keawsawasvong , Hessam Fathipour , Payam Zanganeh Ranjbar , Meghdad Payan , Pitthaya Jamsawang\",\"doi\":\"10.1016/j.sandf.2024.101479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to explore the significant impact of soil fabric anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded shallow foundations overlying a geosynthetic-reinforced granular deposit. For this purpose, the well-established lower bound theorems of limit analysis (LA) in conjunction with the finite elements (FE) formulations and second-order cone programming (SOCP) are exploited to perform the bearing capacity estimations. The consideration of the soil mass’s inherently anisotropic response in the granular layer involves the utilization of distinct internal friction angles in various directions. The lower bound FELA framework adopted in this study incorporates both the pull-out and tensile mechanisms of failure in the reinforcement layer. The marked contribution of soil inherent anisotropy to the impacts of ultimate tensile strength (<span><math><mrow><msub><mi>T</mi><mi>u</mi></msub></mrow></math></span>) and embedment depth (<span><math><mrow><mi>u</mi></mrow></math></span>) of the geosynthetic reinforcement on the failure mechanism, bearing capacity ratio (<em>BCR</em>), and failure envelope of the overlying obliquely/eccentrically strip footing is rigorously examined and discussed. It is generally concluded that for a given embedment depth, failure envelopes of the surface footing in both <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>H</mi></mrow></math></span> and <span><math><mrow><mi>V</mi></mrow></math></span>-<span><math><mrow><mi>M</mi></mrow></math></span> planes shrink appreciably with the increase in the soil anisotropy ratio as well as the decrease in the geosynthetic ultimate tensile strength. Moreover, the influence of soil inherent anisotropy on the overall bearing capacity of shallow foundations is more evident in the case of using strong reinforcement compared to the weak geosynthetic. The findings of this investigation demonstrate that overlooking the soil inherently anisotropic behaviour in the numerical analysis of shallow foundations would give rise to undesirable non-conservative and precarious designs.</p></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S003808062400057X/pdfft?md5=5330ceea9a6760e700fe8c98f2b715c9&pid=1-s2.0-S003808062400057X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003808062400057X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003808062400057X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Influence of soil fabric anisotropy on the bearing capacity of geosynthetic-reinforced foundations under eccentric and inclined loadings
This study aims to explore the significant impact of soil fabric anisotropy on the ultimate bearing capacity of eccentrically and obliquely loaded shallow foundations overlying a geosynthetic-reinforced granular deposit. For this purpose, the well-established lower bound theorems of limit analysis (LA) in conjunction with the finite elements (FE) formulations and second-order cone programming (SOCP) are exploited to perform the bearing capacity estimations. The consideration of the soil mass’s inherently anisotropic response in the granular layer involves the utilization of distinct internal friction angles in various directions. The lower bound FELA framework adopted in this study incorporates both the pull-out and tensile mechanisms of failure in the reinforcement layer. The marked contribution of soil inherent anisotropy to the impacts of ultimate tensile strength () and embedment depth () of the geosynthetic reinforcement on the failure mechanism, bearing capacity ratio (BCR), and failure envelope of the overlying obliquely/eccentrically strip footing is rigorously examined and discussed. It is generally concluded that for a given embedment depth, failure envelopes of the surface footing in both - and - planes shrink appreciably with the increase in the soil anisotropy ratio as well as the decrease in the geosynthetic ultimate tensile strength. Moreover, the influence of soil inherent anisotropy on the overall bearing capacity of shallow foundations is more evident in the case of using strong reinforcement compared to the weak geosynthetic. The findings of this investigation demonstrate that overlooking the soil inherently anisotropic behaviour in the numerical analysis of shallow foundations would give rise to undesirable non-conservative and precarious designs.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.