富勒烯醇介导的血管再生和放射保护:辐射后组织恢复策略

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2024-06-07 DOI:10.1016/j.nantod.2024.102339
Junsong Guo , Hao Wang , Ying Li , Haijun Peng , Hui Xu , Xuefeng Ding , Xinyi Tian , Dongmei Wang , You Liao , Haiyang Jiang , Jing Wei , Hanfeng Yang , Houxiang Hu , Zhanjun Gu
{"title":"富勒烯醇介导的血管再生和放射保护:辐射后组织恢复策略","authors":"Junsong Guo ,&nbsp;Hao Wang ,&nbsp;Ying Li ,&nbsp;Haijun Peng ,&nbsp;Hui Xu ,&nbsp;Xuefeng Ding ,&nbsp;Xinyi Tian ,&nbsp;Dongmei Wang ,&nbsp;You Liao ,&nbsp;Haiyang Jiang ,&nbsp;Jing Wei ,&nbsp;Hanfeng Yang ,&nbsp;Houxiang Hu ,&nbsp;Zhanjun Gu","doi":"10.1016/j.nantod.2024.102339","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation therapy is crucial in combating malignant tumors, yet its damage to the microvascular system can significantly impair patient recovery and prognosis. Although current radiation protection measures mitigate free radical damage to target organs, they fall short in safeguarding the surrounding microvasculature. This study pioneers the use of the matrigel plug angiogenesis model to investigate the application of the water-soluble fullerene derivative Fullerenol in microvascular radioprotection, aiming to effectively protect and repair the microvascular system during radiation therapy, thereby reducing its adverse effects on healthy tissues. Our findings demonstrate that Fullerenol not only efficiently scavenges free radicals, reducing radiation-induced damage, but also promotes endothelial cell proliferation, facilitating the repair of damaged microvasculature and surrounding tissues. Additionally, Fullerenol was found to inhibit Caspase-3 and activate the PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) proliferation metabolic pathway and its downstream proteins, such as eNOS and VEGF (Endothelial nitric oxide synthase/Vascular endothelial growth factor), decreasing endothelial cell apoptosis and maintaining vascular proliferation and angiogenesis potential. This research provides a new option for microvascular radioprotection and offers fresh insights into the repair of tissues damaged by radiation therapy.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fullerenol-mediated vascular regeneration and radioprotection: A strategy for tissue recovery post-radiation\",\"authors\":\"Junsong Guo ,&nbsp;Hao Wang ,&nbsp;Ying Li ,&nbsp;Haijun Peng ,&nbsp;Hui Xu ,&nbsp;Xuefeng Ding ,&nbsp;Xinyi Tian ,&nbsp;Dongmei Wang ,&nbsp;You Liao ,&nbsp;Haiyang Jiang ,&nbsp;Jing Wei ,&nbsp;Hanfeng Yang ,&nbsp;Houxiang Hu ,&nbsp;Zhanjun Gu\",\"doi\":\"10.1016/j.nantod.2024.102339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radiation therapy is crucial in combating malignant tumors, yet its damage to the microvascular system can significantly impair patient recovery and prognosis. Although current radiation protection measures mitigate free radical damage to target organs, they fall short in safeguarding the surrounding microvasculature. This study pioneers the use of the matrigel plug angiogenesis model to investigate the application of the water-soluble fullerene derivative Fullerenol in microvascular radioprotection, aiming to effectively protect and repair the microvascular system during radiation therapy, thereby reducing its adverse effects on healthy tissues. Our findings demonstrate that Fullerenol not only efficiently scavenges free radicals, reducing radiation-induced damage, but also promotes endothelial cell proliferation, facilitating the repair of damaged microvasculature and surrounding tissues. Additionally, Fullerenol was found to inhibit Caspase-3 and activate the PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) proliferation metabolic pathway and its downstream proteins, such as eNOS and VEGF (Endothelial nitric oxide synthase/Vascular endothelial growth factor), decreasing endothelial cell apoptosis and maintaining vascular proliferation and angiogenesis potential. This research provides a new option for microvascular radioprotection and offers fresh insights into the repair of tissues damaged by radiation therapy.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224001944\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224001944","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

放射治疗是对抗恶性肿瘤的关键,但其对微血管系统的损害会严重影响患者的康复和预后。尽管目前的辐射防护措施可以减轻自由基对靶器官的损伤,但却无法保护周围的微血管。本研究开创性地使用 matrigel 塞血管生成模型来研究水溶性富勒烯衍生物 Fullerenol 在微血管辐射防护中的应用,旨在有效保护和修复放疗过程中的微血管系统,从而减少放疗对健康组织的不利影响。我们的研究结果表明,富勒烯醇不仅能有效清除自由基,减少辐射引起的损伤,还能促进内皮细胞增殖,促进受损微血管和周围组织的修复。此外,研究还发现富勒烯醇能抑制 Caspase-3,激活 PI3K/AKT(磷脂酰肌醇 3-激酶/蛋白激酶 B)增殖代谢途径及其下游蛋白,如 eNOS 和 VEGF(内皮一氧化氮合酶/血管内皮生长因子),减少内皮细胞凋亡,维持血管增殖和血管生成潜力。这项研究为微血管放射保护提供了新的选择,并为修复放疗损伤的组织提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fullerenol-mediated vascular regeneration and radioprotection: A strategy for tissue recovery post-radiation

Radiation therapy is crucial in combating malignant tumors, yet its damage to the microvascular system can significantly impair patient recovery and prognosis. Although current radiation protection measures mitigate free radical damage to target organs, they fall short in safeguarding the surrounding microvasculature. This study pioneers the use of the matrigel plug angiogenesis model to investigate the application of the water-soluble fullerene derivative Fullerenol in microvascular radioprotection, aiming to effectively protect and repair the microvascular system during radiation therapy, thereby reducing its adverse effects on healthy tissues. Our findings demonstrate that Fullerenol not only efficiently scavenges free radicals, reducing radiation-induced damage, but also promotes endothelial cell proliferation, facilitating the repair of damaged microvasculature and surrounding tissues. Additionally, Fullerenol was found to inhibit Caspase-3 and activate the PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) proliferation metabolic pathway and its downstream proteins, such as eNOS and VEGF (Endothelial nitric oxide synthase/Vascular endothelial growth factor), decreasing endothelial cell apoptosis and maintaining vascular proliferation and angiogenesis potential. This research provides a new option for microvascular radioprotection and offers fresh insights into the repair of tissues damaged by radiation therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Single active Au1O5 clusters for metabolism-inspired sepsis management through immune regulation Metal-organic frameworks derived emerging theranostic platforms Nitrogen-doped bismuth ferrite nanozymes: Tailored electronic structure for organic pollutant degradation Interfacial energy-mediated stability of liquid barrier for sustainable and efficient anti-clogging of urinary catheter Biodegradable conductive IPN in situ cryogels with anisotropic microchannels and sequential delivery of dual-growth factors for skeletal muscle regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1