动态扭曲网格上基于熵阻尼和体积粘度的人工可压缩性方法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-05-31 DOI:10.1016/j.compfluid.2024.106328
C.P. AbdulGafoor , Aman Rajananda , Achu Shankar , Nagabhushana Rao Vadlamani
{"title":"动态扭曲网格上基于熵阻尼和体积粘度的人工可压缩性方法","authors":"C.P. AbdulGafoor ,&nbsp;Aman Rajananda ,&nbsp;Achu Shankar ,&nbsp;Nagabhushana Rao Vadlamani","doi":"10.1016/j.compfluid.2024.106328","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial Compressibility Methods (ACM) rely on an artificial equation that links the pressure and velocity fields to model incompressible flows. These hyperbolic/parabolic equations can rapidly converge to a ‘nearly’ divergence-free flow field in contrast to the methods based on the elliptic pressure Poisson equation. We compare the computational efficacy of two ACMs, namely, the Bulk Viscosity ACM (BVACM) and Entropically Damped Artificial Compressibility (EDAC) recently proposed in the literature. The methods implemented in the in-house high-order finite difference solver, COMPSQUARE, are validated for the test cases of a 2D doubly periodic shear layer (DPSL), a 3D Taylor Green Vortex (TGV), and 2D/3D NACA0012 airfoil pitching about the quarter chord. The efficacy of these methods was also tested on static and dynamic grids using conservative metrics. Although both ACMs yield competitive results, the divergence of the velocity field is found to be more prominent in the highly unsteady regions. BVACM resulted in (a) a superior divergence-free velocity field and (b) <span><math><mrow><mn>20</mn><mo>−</mo><mn>38</mn><mtext>%</mtext></mrow></math></span> higher maximum stable time than the EDAC, thereby increasing the computational speed. A higher value of the bulk viscosity coefficient, <span><math><mi>A</mi></math></span>, although ensures a stringent divergence-free velocity field, is shown to have minimal effect on the flow statistics and reduce the maximum stable time step. The parabolic–hyperbolic nature of the governing equations and the lack of dual time-stepping in BVACM and EDAC ensures that both these methods are highly scalable on massively parallel architectures. Since the energy equation is no longer required to compute the velocity field, both EDAC and BVACM approaches are found to be <span><math><mrow><mn>8</mn><mo>−</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> faster than the weakly compressible Navier–Stokes simulations under the low-Mach number limit.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"279 ","pages":"Article 106328"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy damping and Bulk Viscosity based artificial compressibility methods on dynamically distorting grids\",\"authors\":\"C.P. AbdulGafoor ,&nbsp;Aman Rajananda ,&nbsp;Achu Shankar ,&nbsp;Nagabhushana Rao Vadlamani\",\"doi\":\"10.1016/j.compfluid.2024.106328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial Compressibility Methods (ACM) rely on an artificial equation that links the pressure and velocity fields to model incompressible flows. These hyperbolic/parabolic equations can rapidly converge to a ‘nearly’ divergence-free flow field in contrast to the methods based on the elliptic pressure Poisson equation. We compare the computational efficacy of two ACMs, namely, the Bulk Viscosity ACM (BVACM) and Entropically Damped Artificial Compressibility (EDAC) recently proposed in the literature. The methods implemented in the in-house high-order finite difference solver, COMPSQUARE, are validated for the test cases of a 2D doubly periodic shear layer (DPSL), a 3D Taylor Green Vortex (TGV), and 2D/3D NACA0012 airfoil pitching about the quarter chord. The efficacy of these methods was also tested on static and dynamic grids using conservative metrics. Although both ACMs yield competitive results, the divergence of the velocity field is found to be more prominent in the highly unsteady regions. BVACM resulted in (a) a superior divergence-free velocity field and (b) <span><math><mrow><mn>20</mn><mo>−</mo><mn>38</mn><mtext>%</mtext></mrow></math></span> higher maximum stable time than the EDAC, thereby increasing the computational speed. A higher value of the bulk viscosity coefficient, <span><math><mi>A</mi></math></span>, although ensures a stringent divergence-free velocity field, is shown to have minimal effect on the flow statistics and reduce the maximum stable time step. The parabolic–hyperbolic nature of the governing equations and the lack of dual time-stepping in BVACM and EDAC ensures that both these methods are highly scalable on massively parallel architectures. Since the energy equation is no longer required to compute the velocity field, both EDAC and BVACM approaches are found to be <span><math><mrow><mn>8</mn><mo>−</mo><mn>10</mn><mtext>%</mtext></mrow></math></span> faster than the weakly compressible Navier–Stokes simulations under the low-Mach number limit.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"279 \",\"pages\":\"Article 106328\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001609\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人工可压缩性方法(ACM)依赖于一个连接压力场和速度场的人工方程来模拟不可压缩的流动。与基于椭圆压力泊松方程的方法相比,这些双曲/抛物方程可以快速收敛到 "接近 "无发散流场。我们比较了两种 ACM 的计算效率,即最近在文献中提出的块状粘度 ACM(BVACM)和 Entropically Damped Artificial Compressibility(EDAC)。在内部高阶有限差分求解器 COMPSQUARE 中实施的方法在二维双周期剪切层 (DPSL)、三维泰勒绿色涡旋 (TGV) 和二维/三维 NACA0012 翼面围绕四分之一弦俯仰的测试案例中得到了验证。还使用保守指标在静态和动态网格上测试了这些方法的功效。尽管这两种 ACM 都能产生有竞争力的结果,但在高度不稳定区域,速度场的发散更为明显。BVACM 的结果是:(a) 无发散速度场更优;(b) 最大稳定时间比 EDAC 高 20-38%,从而提高了计算速度。较高的体积粘度系数 A 值虽然能确保严格的无发散速度场,但对流动统计的影响却微乎其微,并减少了最大稳定时间步长。在 BVACM 和 EDAC 中,控制方程的抛物线-超抛物线性质以及缺乏双重时间步长确保了这两种方法在大规模并行架构上的高度可扩展性。由于不再需要能量方程来计算速度场,在低马赫数限制下,EDAC 和 BVACM 方法比弱可压缩 Navier-Stokes 仿真快 8-10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy damping and Bulk Viscosity based artificial compressibility methods on dynamically distorting grids

Artificial Compressibility Methods (ACM) rely on an artificial equation that links the pressure and velocity fields to model incompressible flows. These hyperbolic/parabolic equations can rapidly converge to a ‘nearly’ divergence-free flow field in contrast to the methods based on the elliptic pressure Poisson equation. We compare the computational efficacy of two ACMs, namely, the Bulk Viscosity ACM (BVACM) and Entropically Damped Artificial Compressibility (EDAC) recently proposed in the literature. The methods implemented in the in-house high-order finite difference solver, COMPSQUARE, are validated for the test cases of a 2D doubly periodic shear layer (DPSL), a 3D Taylor Green Vortex (TGV), and 2D/3D NACA0012 airfoil pitching about the quarter chord. The efficacy of these methods was also tested on static and dynamic grids using conservative metrics. Although both ACMs yield competitive results, the divergence of the velocity field is found to be more prominent in the highly unsteady regions. BVACM resulted in (a) a superior divergence-free velocity field and (b) 2038% higher maximum stable time than the EDAC, thereby increasing the computational speed. A higher value of the bulk viscosity coefficient, A, although ensures a stringent divergence-free velocity field, is shown to have minimal effect on the flow statistics and reduce the maximum stable time step. The parabolic–hyperbolic nature of the governing equations and the lack of dual time-stepping in BVACM and EDAC ensures that both these methods are highly scalable on massively parallel architectures. Since the energy equation is no longer required to compute the velocity field, both EDAC and BVACM approaches are found to be 810% faster than the weakly compressible Navier–Stokes simulations under the low-Mach number limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1