{"title":"砂浆作为混凝土的合适模拟物的真菌定殖和渗透:对建筑环境中真菌生物劣化的影响","authors":"Geoffrey Michael Gadd , Louise McGregor","doi":"10.1016/j.funbio.2024.05.012","DOIUrl":null,"url":null,"abstract":"<div><p>A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. <em>Aspergillus niger</em>, <em>Stemphylium</em> sp. and <em>Paecilomyces</em> sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of ∼530 um for <em>A. niger</em> and ∼620 um for <em>Stemphylium</em> sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878614624000710/pdfft?md5=732e6ce3764661ef337dfa86ea8db69c&pid=1-s2.0-S1878614624000710-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fungal colonization and penetration of mortar as a suitable simulant for concrete: Implications for fungal biodeterioration in the built environment\",\"authors\":\"Geoffrey Michael Gadd , Louise McGregor\",\"doi\":\"10.1016/j.funbio.2024.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. <em>Aspergillus niger</em>, <em>Stemphylium</em> sp. and <em>Paecilomyces</em> sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of ∼530 um for <em>A. niger</em> and ∼620 um for <em>Stemphylium</em> sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878614624000710/pdfft?md5=732e6ce3764661ef337dfa86ea8db69c&pid=1-s2.0-S1878614624000710-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614624000710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614624000710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fungal colonization and penetration of mortar as a suitable simulant for concrete: Implications for fungal biodeterioration in the built environment
A range of fungal species showed variable abilities to colonize and penetrate a mortar substrate. Calcium biomineralization was a common feature with calcium-containing crystals deposited in the microenvironment or encrusting hyphae, regardless of the specific mortar composition. Several species caused significant damage to the mortar surface, exhibiting burrowing and penetration, surface etching, and biomineralization. In some cases, extensive biomineralization of hyphae, probably by carbonatization, resulted in the formation of crystalline tubes after hyphal degradation on mortar blocks, including those amended with Co or Sr carbonate. Ca was the only metal detected in the biomineralized formations with Co or Sr undetectable. Aspergillus niger, Stemphylium sp. and Paecilomyces sp. could penetrate mortar with differential responses depending on the porosity. Fluorescent staining of thin sections recorded penetration depths of ∼530 um for A. niger and ∼620 um for Stemphylium sp. Penetration depth varied inversely with porosity and greater penetration depths were achieved in mortar with a lower porosity (lower water/cement ratio). These results have provided further understanding of biodeteriorative fungal interactions with cementitious substrates that can clearly affect structural integrity. The potential significance of fungal colonization and such biodeteriorative phenomena should not be overlooked in built environment contexts, including radionuclide storage and surface decontamination.