军事训练、战争和民用弹药碎片对土壤生物的影响:生态毒理学综述

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-06-07 DOI:10.1007/s00374-024-01835-8
Andrés Rodríguez-Seijo, David Fernández-Calviño, Manuel Arias-Estévez, Daniel Arenas-Lago
{"title":"军事训练、战争和民用弹药碎片对土壤生物的影响:生态毒理学综述","authors":"Andrés Rodríguez-Seijo, David Fernández-Calviño, Manuel Arias-Estévez, Daniel Arenas-Lago","doi":"10.1007/s00374-024-01835-8","DOIUrl":null,"url":null,"abstract":"<p>Civilian and military activities are sources of water and soil contamination by inorganic and organic contaminants caused by shooting practices, warfare, and/or mechanized military training. Lead poisoning and contaminant bioaccumulation due to spent shots or other related military contaminants have been widely studied for mammals, birds, and plants. Although there are different papers on the impact on earthworms, information on micro and mesofauna (i.e., collembola, nematodes, etc.) is still scarce. Here, we review the published data regarding the impact of civilian and military shooting activities, including war-impacted areas, focusing on soil organisms, from microbial communities to the ecotoxicological effects on terrestrial organisms. One hundred eleven studies were considered where earthworms and enchytraeids were widely studied, especially under ecotoxicological assays with Pb and energetic-related compounds from military explosives. There is a lack of information on soil organism groups, such as mites, ants, or gastropods, which play important roles in soil function. Data from combined exposures (e.g., PTEs + TNT and PTEs + PAHs) is scarce since several studies focused on a single contaminant, usually Pb, when combined contaminants would be more realistic. Ecotoxicological assays should also cover other understudied ammunition elements, such as Bi, Cu, or W.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of military training, warfare and civilian ammunition debris on the soil organisms: an ecotoxicological review\",\"authors\":\"Andrés Rodríguez-Seijo, David Fernández-Calviño, Manuel Arias-Estévez, Daniel Arenas-Lago\",\"doi\":\"10.1007/s00374-024-01835-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Civilian and military activities are sources of water and soil contamination by inorganic and organic contaminants caused by shooting practices, warfare, and/or mechanized military training. Lead poisoning and contaminant bioaccumulation due to spent shots or other related military contaminants have been widely studied for mammals, birds, and plants. Although there are different papers on the impact on earthworms, information on micro and mesofauna (i.e., collembola, nematodes, etc.) is still scarce. Here, we review the published data regarding the impact of civilian and military shooting activities, including war-impacted areas, focusing on soil organisms, from microbial communities to the ecotoxicological effects on terrestrial organisms. One hundred eleven studies were considered where earthworms and enchytraeids were widely studied, especially under ecotoxicological assays with Pb and energetic-related compounds from military explosives. There is a lack of information on soil organism groups, such as mites, ants, or gastropods, which play important roles in soil function. Data from combined exposures (e.g., PTEs + TNT and PTEs + PAHs) is scarce since several studies focused on a single contaminant, usually Pb, when combined contaminants would be more realistic. Ecotoxicological assays should also cover other understudied ammunition elements, such as Bi, Cu, or W.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01835-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01835-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

平民和军事活动是射击训练、战争和/或机械化军事训练造成的无机和有机污染物污染水源和土壤的来源。人们已经针对哺乳动物、鸟类和植物广泛研究了废枪或其他相关军事污染物造成的铅中毒和污染物生物累积。虽然关于蚯蚓所受影响的论文很多,但关于微型和中型动物(如藻类、线虫等)的资料仍然很少。在此,我们回顾了已发表的有关民用和军用射击活动(包括战争影响地区)影响的数据,重点关注土壤生物,从微生物群落到对陆生生物的生态毒理学影响。其中有 111 项研究对蚯蚓和鞘翅目昆虫进行了广泛研究,特别是在使用铅和军用爆炸物产生的高能相关化合物进行生态毒理学检测的情况下。缺乏有关土壤生物群体的信息,如螨虫、蚂蚁或腹足类动物,它们在土壤功能中发挥着重要作用。综合暴露(如 PTEs + TNT 和 PTEs + PAHs)的数据很少,因为几项研究都集中在单一污染物上,通常是铅,而综合污染物更符合实际情况。生态毒理学检测还应包括其他未得到充分研究的弹药元素,如铋、铜或钨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of military training, warfare and civilian ammunition debris on the soil organisms: an ecotoxicological review

Civilian and military activities are sources of water and soil contamination by inorganic and organic contaminants caused by shooting practices, warfare, and/or mechanized military training. Lead poisoning and contaminant bioaccumulation due to spent shots or other related military contaminants have been widely studied for mammals, birds, and plants. Although there are different papers on the impact on earthworms, information on micro and mesofauna (i.e., collembola, nematodes, etc.) is still scarce. Here, we review the published data regarding the impact of civilian and military shooting activities, including war-impacted areas, focusing on soil organisms, from microbial communities to the ecotoxicological effects on terrestrial organisms. One hundred eleven studies were considered where earthworms and enchytraeids were widely studied, especially under ecotoxicological assays with Pb and energetic-related compounds from military explosives. There is a lack of information on soil organism groups, such as mites, ants, or gastropods, which play important roles in soil function. Data from combined exposures (e.g., PTEs + TNT and PTEs + PAHs) is scarce since several studies focused on a single contaminant, usually Pb, when combined contaminants would be more realistic. Ecotoxicological assays should also cover other understudied ammunition elements, such as Bi, Cu, or W.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Rhizosphere bacteriome assemblage following initial fluctuations is delayed with nitrogen additions in tomato seedlings The role of tillage practices in wheat straw decomposition and shaping the associated microbial communities in Endocalcaric– Epigleyic Cambisol soil Soil legacies left by a 20-year eucalypt plantation and a secondary vegetation covers on young eucalypt plants and plant-soil feedback Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1