Gi-Eun Yang, Min-Hye Kim, Mi-So Jeong, Sang-Yeop Lee, Yung Hyun Choi, Jong-Kil Nam, Tae Nam Kim, Sun-Hee Leem
{"title":"PDCD6-VNTR多态性与泌尿系统癌症易感性之间的关系","authors":"Gi-Eun Yang, Min-Hye Kim, Mi-So Jeong, Sang-Yeop Lee, Yung Hyun Choi, Jong-Kil Nam, Tae Nam Kim, Sun-Hee Leem","doi":"10.1007/s13258-024-01523-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Programmed cell death 6 (PDCD6) is known to be involved in apoptosis and tumorigenesis. Given the reported association with urinary cancer susceptibility through SNP analysis, we further analyzed the entire genomic structure of PDCD6.</p><p><strong>Methods: </strong>Three VNTR regions (MS1-MS3) were identified through the analysis of the genomic structure of PDCD6. To investigate the association between these VNTR regions and urinary cancer susceptibility, genomic DNA was extracted from 413 cancer-free male controls, 267 bladder cancer patients, and 331 prostate cancer patients. Polymerase chain reaction (PCR) was performed to analyze the PDCD6-MS regions. Statistical analysis was performed to determine the association between specific genotypes and cancer risk. In addition, the effect of specific VNTRs on PDCD6 expression was also confirmed using a reporter vector.</p><p><strong>Results: </strong>Among the three VNTR regions, MS1 and MS2 exhibited monomorphism, while the MS3 region represented polymorphism, with its transmission to subsequent generations through meiosis substantiating its utility as a DNA typing marker. In a case-control study, the presence of rare alleles within PDCD6-MS3 exhibited significant associations with both bladder cancer (OR = 2.37, 95% CI: 1.33-4.95, P = 0.019) and prostate cancer (OR = 2.11, 95% CI: 1.03-4.36, P = 0.038). Furthermore, through luciferase assays, we validated the impact of the MS3 region on modulating PDCD6 expression.</p><p><strong>Conclusions: </strong>This study suggests that the PDCD6-MS3 region could serve as a prognostic marker for urinary cancers, specifically bladder cancer and prostate cancer. Moreover, the subdued influence exerted by PDCD6-MS3 on the expression of PDCD6 offers another insight concerning the progression of urinary cancer.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":"1281-1291"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association between PDCD6-VNTR polymorphism and urinary cancer susceptibility.\",\"authors\":\"Gi-Eun Yang, Min-Hye Kim, Mi-So Jeong, Sang-Yeop Lee, Yung Hyun Choi, Jong-Kil Nam, Tae Nam Kim, Sun-Hee Leem\",\"doi\":\"10.1007/s13258-024-01523-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Programmed cell death 6 (PDCD6) is known to be involved in apoptosis and tumorigenesis. Given the reported association with urinary cancer susceptibility through SNP analysis, we further analyzed the entire genomic structure of PDCD6.</p><p><strong>Methods: </strong>Three VNTR regions (MS1-MS3) were identified through the analysis of the genomic structure of PDCD6. To investigate the association between these VNTR regions and urinary cancer susceptibility, genomic DNA was extracted from 413 cancer-free male controls, 267 bladder cancer patients, and 331 prostate cancer patients. Polymerase chain reaction (PCR) was performed to analyze the PDCD6-MS regions. Statistical analysis was performed to determine the association between specific genotypes and cancer risk. In addition, the effect of specific VNTRs on PDCD6 expression was also confirmed using a reporter vector.</p><p><strong>Results: </strong>Among the three VNTR regions, MS1 and MS2 exhibited monomorphism, while the MS3 region represented polymorphism, with its transmission to subsequent generations through meiosis substantiating its utility as a DNA typing marker. In a case-control study, the presence of rare alleles within PDCD6-MS3 exhibited significant associations with both bladder cancer (OR = 2.37, 95% CI: 1.33-4.95, P = 0.019) and prostate cancer (OR = 2.11, 95% CI: 1.03-4.36, P = 0.038). Furthermore, through luciferase assays, we validated the impact of the MS3 region on modulating PDCD6 expression.</p><p><strong>Conclusions: </strong>This study suggests that the PDCD6-MS3 region could serve as a prognostic marker for urinary cancers, specifically bladder cancer and prostate cancer. Moreover, the subdued influence exerted by PDCD6-MS3 on the expression of PDCD6 offers another insight concerning the progression of urinary cancer.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"1281-1291\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01523-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01523-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Association between PDCD6-VNTR polymorphism and urinary cancer susceptibility.
Background: Programmed cell death 6 (PDCD6) is known to be involved in apoptosis and tumorigenesis. Given the reported association with urinary cancer susceptibility through SNP analysis, we further analyzed the entire genomic structure of PDCD6.
Methods: Three VNTR regions (MS1-MS3) were identified through the analysis of the genomic structure of PDCD6. To investigate the association between these VNTR regions and urinary cancer susceptibility, genomic DNA was extracted from 413 cancer-free male controls, 267 bladder cancer patients, and 331 prostate cancer patients. Polymerase chain reaction (PCR) was performed to analyze the PDCD6-MS regions. Statistical analysis was performed to determine the association between specific genotypes and cancer risk. In addition, the effect of specific VNTRs on PDCD6 expression was also confirmed using a reporter vector.
Results: Among the three VNTR regions, MS1 and MS2 exhibited monomorphism, while the MS3 region represented polymorphism, with its transmission to subsequent generations through meiosis substantiating its utility as a DNA typing marker. In a case-control study, the presence of rare alleles within PDCD6-MS3 exhibited significant associations with both bladder cancer (OR = 2.37, 95% CI: 1.33-4.95, P = 0.019) and prostate cancer (OR = 2.11, 95% CI: 1.03-4.36, P = 0.038). Furthermore, through luciferase assays, we validated the impact of the MS3 region on modulating PDCD6 expression.
Conclusions: This study suggests that the PDCD6-MS3 region could serve as a prognostic marker for urinary cancers, specifically bladder cancer and prostate cancer. Moreover, the subdued influence exerted by PDCD6-MS3 on the expression of PDCD6 offers another insight concerning the progression of urinary cancer.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.