新型双子折叠式三浦折叠芯承受轴向挤压的能量吸收能力

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-06-04 DOI:10.1016/j.matdes.2024.113069
Caihua Zhou , Wenhu Liu , Changyuan Ge , Zhibo Song , Kaifan Du
{"title":"新型双子折叠式三浦折叠芯承受轴向挤压的能量吸收能力","authors":"Caihua Zhou ,&nbsp;Wenhu Liu ,&nbsp;Changyuan Ge ,&nbsp;Zhibo Song ,&nbsp;Kaifan Du","doi":"10.1016/j.matdes.2024.113069","DOIUrl":null,"url":null,"abstract":"<div><p>A modified Miura foldcore geometry was developed by introducing sub-folds into the cell walls of a conventional Miura foldcore. Similar to other sub-fold Miura foldcores, stable plastic hinge lines were generated at sub-fold sites under the guidance of the sub-folds and transformed into traveling hinge lines or stationary hinge lines in the subsequent crushing process. Therefore, in comparison to the conventional foldcore, the dual-sub-fold Miura foldcore exhibited a higher average crushing force with an improvement of 60.8 % in the optimum case. The dual-sub-fold Miura foldcore exhibited relatively lower stiffness at the sub-fold sites, effectively reducing the initial peak crushing force. This reduction in peak crushing force reached a maximum decrease of 70 %. Moreover, this dual-sub-fold foldcore was glued to two parallel rigid plates (top and bottom), making it more suitable for engineering applications. The parametric study indicated that the dual-sub-fold Miura foldcore exhibited predictable and stable deformation modes. It was found that the average crushing force could be effectively enhanced by reducing the core folding angle, elevating the sub-fold position, decreasing the sub-fold size, and elongating the foldcore. The theoretical model for predicting the energy absorption performance of the foldcore was also established.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S026412752400443X/pdfft?md5=64efe4ce85af5aa09f39c13e2cfeabe4&pid=1-s2.0-S026412752400443X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The energy absorption capacity of a novel dual-sub-fold Miura foldcore subjected to axial crushing\",\"authors\":\"Caihua Zhou ,&nbsp;Wenhu Liu ,&nbsp;Changyuan Ge ,&nbsp;Zhibo Song ,&nbsp;Kaifan Du\",\"doi\":\"10.1016/j.matdes.2024.113069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A modified Miura foldcore geometry was developed by introducing sub-folds into the cell walls of a conventional Miura foldcore. Similar to other sub-fold Miura foldcores, stable plastic hinge lines were generated at sub-fold sites under the guidance of the sub-folds and transformed into traveling hinge lines or stationary hinge lines in the subsequent crushing process. Therefore, in comparison to the conventional foldcore, the dual-sub-fold Miura foldcore exhibited a higher average crushing force with an improvement of 60.8 % in the optimum case. The dual-sub-fold Miura foldcore exhibited relatively lower stiffness at the sub-fold sites, effectively reducing the initial peak crushing force. This reduction in peak crushing force reached a maximum decrease of 70 %. Moreover, this dual-sub-fold foldcore was glued to two parallel rigid plates (top and bottom), making it more suitable for engineering applications. The parametric study indicated that the dual-sub-fold Miura foldcore exhibited predictable and stable deformation modes. It was found that the average crushing force could be effectively enhanced by reducing the core folding angle, elevating the sub-fold position, decreasing the sub-fold size, and elongating the foldcore. The theoretical model for predicting the energy absorption performance of the foldcore was also established.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S026412752400443X/pdfft?md5=64efe4ce85af5aa09f39c13e2cfeabe4&pid=1-s2.0-S026412752400443X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026412752400443X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026412752400443X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过在传统三浦折芯的细胞壁中引入子折叠,开发出了一种改进的三浦折芯几何形状。与其他亚折叠三浦折芯类似,在亚折叠的引导下,亚折叠部位产生了稳定的塑性铰链线,并在随后的破碎过程中转变为行进铰链线或静止铰链线。因此,与传统的折芯相比,双子折三浦折芯的平均破碎力更高,在最佳情况下提高了 60.8%。双子折叠三浦折叠芯在子折叠部位的刚度相对较低,从而有效降低了初始峰值破碎力。峰值破碎力的最大降幅达到 70%。此外,这种双次折叠折芯是粘在两块平行的刚性板(顶部和底部)上的,因此更适合工程应用。参数研究表明,双次折叠三浦折芯表现出了可预测的稳定变形模式。研究发现,通过减小铁芯折叠角度、提高子折叠位置、减小子折叠尺寸和拉长折叠铁芯,可有效提高平均压碎力。此外,还建立了预测折芯能量吸收性能的理论模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The energy absorption capacity of a novel dual-sub-fold Miura foldcore subjected to axial crushing

A modified Miura foldcore geometry was developed by introducing sub-folds into the cell walls of a conventional Miura foldcore. Similar to other sub-fold Miura foldcores, stable plastic hinge lines were generated at sub-fold sites under the guidance of the sub-folds and transformed into traveling hinge lines or stationary hinge lines in the subsequent crushing process. Therefore, in comparison to the conventional foldcore, the dual-sub-fold Miura foldcore exhibited a higher average crushing force with an improvement of 60.8 % in the optimum case. The dual-sub-fold Miura foldcore exhibited relatively lower stiffness at the sub-fold sites, effectively reducing the initial peak crushing force. This reduction in peak crushing force reached a maximum decrease of 70 %. Moreover, this dual-sub-fold foldcore was glued to two parallel rigid plates (top and bottom), making it more suitable for engineering applications. The parametric study indicated that the dual-sub-fold Miura foldcore exhibited predictable and stable deformation modes. It was found that the average crushing force could be effectively enhanced by reducing the core folding angle, elevating the sub-fold position, decreasing the sub-fold size, and elongating the foldcore. The theoretical model for predicting the energy absorption performance of the foldcore was also established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Multi-directional freeze-casting of interpenetrating phase composites with multi-aligned structure, nearly isotropy, high performance Mechanical characterization of lattice structures fabricated by selective laser melting via an image-based finite cell method with a damage model Gelatin-methacrylate microspheres loaded with tendon-derived stem cells facilitate tendinopathy healing Tensile and fatigue behaviors of newly developed HAYNES® 233 alloy: Additively manufactured vs. wrought Kinetics and mechanisms of high-temperature oxidation in BCC and FCC high-alloy Fe-based alloys with high volume fraction of carbides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1