Mfsd2a 通过紧密连接和转细胞作用调节血迷宫屏障的形成和功能

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Hearing Research Pub Date : 2024-05-28 DOI:10.1016/j.heares.2024.109048
Xiaoju Xu , Ke Xu , Fengqiu Chen , Dehong Yu , Xueling Wang
{"title":"Mfsd2a 通过紧密连接和转细胞作用调节血迷宫屏障的形成和功能","authors":"Xiaoju Xu ,&nbsp;Ke Xu ,&nbsp;Fengqiu Chen ,&nbsp;Dehong Yu ,&nbsp;Xueling Wang","doi":"10.1016/j.heares.2024.109048","DOIUrl":null,"url":null,"abstract":"<div><p>The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109048"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mfsd2a regulates the blood-labyrinth-barrier formation and function through tight junctions and transcytosis\",\"authors\":\"Xiaoju Xu ,&nbsp;Ke Xu ,&nbsp;Fengqiu Chen ,&nbsp;Dehong Yu ,&nbsp;Xueling Wang\",\"doi\":\"10.1016/j.heares.2024.109048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.</p></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":\"450 \",\"pages\":\"Article 109048\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001011\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

血脑屏障(Blood-Labyrinth Barrier,BBB)是维持内耳淋巴平衡的关键,但人们对其发育和功能的复杂性了解不足。Mfsd2a 分子与血脑屏障(BBB)的结构和功能完整性密不可分,本研究探讨了 Mfsd2a 分子对血脑屏障的本体发育和维持的贡献。我们的实证研究结果表明,在小鼠模型中,血脑屏障的成熟要到出生后两周左右才能实现,之前的阶段具有显著的通透性。转录组分析表明,在BLB完整的标本中,耳蜗侧壁内Mfsd2a的表达明显增加。此外,体外和体内试验都证实,Mfsd2a 表达的减少主要通过减弱紧密连接蛋白的表达和增强内皮细胞的转囊作用,对 BLB 的通透性和结构完整性产生不利影响。这些发现强调了Mfsd2a在确保BLB完整性方面不可或缺的作用,并建议将其作为旨在改善听力损失的治疗干预的可行靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mfsd2a regulates the blood-labyrinth-barrier formation and function through tight junctions and transcytosis

The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
期刊最新文献
The therapeutic effect and underlying biochemical mechanism of methylprednisolone and D-methionine in “rescuing” noise-induced hearing loss in guinea pigs Silicone-based AC102-loaded cochlear implant coatings protect residual hearing in an animal model of cochlear implantation Impaired brainstem auditory evoked potentials after in utero exposure to high dose paracetamol exposure Sensory and affective dimensions in loudness perception: Insights from young adults Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1