{"title":"路径范围上的并行程序分析","authors":"Jan Haltermann , Marie-Christine Jakobs , Cedric Richter , Heike Wehrheim","doi":"10.1016/j.scico.2024.103154","DOIUrl":null,"url":null,"abstract":"<div><p>Symbolic execution is a software verification technique symbolically running programs and thereby checking for bugs. Ranged symbolic execution performs symbolic execution on program parts, so-called <em>path ranges</em>, in parallel. Due to the parallelism, verification is accelerated and hence scales to larger programs.</p><p>In this paper, we discuss a generalization of ranged symbolic execution to arbitrary program analyses. More specifically, we present a verification approach that splits programs into path ranges and then runs arbitrary analyses on the ranges in parallel. Our approach in particular allows to run <em>different</em> analyses on different program parts. We have implemented this generalization on top of the tool <span>CPAchecker</span> and evaluated it on programs from the SV-COMP benchmark. Our evaluation shows that verification can benefit from the parallelization of the verification task, but also needs a form of work stealing (between analyses) to become efficient.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"238 ","pages":"Article 103154"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167642324000777/pdfft?md5=c9721851a6e6fced1e9f8337cb568046&pid=1-s2.0-S0167642324000777-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Parallel program analysis on path ranges\",\"authors\":\"Jan Haltermann , Marie-Christine Jakobs , Cedric Richter , Heike Wehrheim\",\"doi\":\"10.1016/j.scico.2024.103154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Symbolic execution is a software verification technique symbolically running programs and thereby checking for bugs. Ranged symbolic execution performs symbolic execution on program parts, so-called <em>path ranges</em>, in parallel. Due to the parallelism, verification is accelerated and hence scales to larger programs.</p><p>In this paper, we discuss a generalization of ranged symbolic execution to arbitrary program analyses. More specifically, we present a verification approach that splits programs into path ranges and then runs arbitrary analyses on the ranges in parallel. Our approach in particular allows to run <em>different</em> analyses on different program parts. We have implemented this generalization on top of the tool <span>CPAchecker</span> and evaluated it on programs from the SV-COMP benchmark. Our evaluation shows that verification can benefit from the parallelization of the verification task, but also needs a form of work stealing (between analyses) to become efficient.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"238 \",\"pages\":\"Article 103154\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000777/pdfft?md5=c9721851a6e6fced1e9f8337cb568046&pid=1-s2.0-S0167642324000777-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000777\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000777","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Symbolic execution is a software verification technique symbolically running programs and thereby checking for bugs. Ranged symbolic execution performs symbolic execution on program parts, so-called path ranges, in parallel. Due to the parallelism, verification is accelerated and hence scales to larger programs.
In this paper, we discuss a generalization of ranged symbolic execution to arbitrary program analyses. More specifically, we present a verification approach that splits programs into path ranges and then runs arbitrary analyses on the ranges in parallel. Our approach in particular allows to run different analyses on different program parts. We have implemented this generalization on top of the tool CPAchecker and evaluated it on programs from the SV-COMP benchmark. Our evaluation shows that verification can benefit from the parallelization of the verification task, but also needs a form of work stealing (between analyses) to become efficient.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.