制备硅石墨阳极的统计方法:氧含量和晶体尺寸对电化学性能的影响

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-06-06 DOI:10.1016/j.powtec.2024.119982
Alper Güneren, Zoltán Lenčéš
{"title":"制备硅石墨阳极的统计方法:氧含量和晶体尺寸对电化学性能的影响","authors":"Alper Güneren,&nbsp;Zoltán Lenčéš","doi":"10.1016/j.powtec.2024.119982","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing the overall performance of Si-based anodes is still challenging because of the influence of various parameters involved in the preparation processes. This study addresses this challenge by employing the design of experiment technique to assess the impact of ball milling parameters such as milling speed, time, ball to powder and medium to powder ratio on the properties of silicon/graphite (Si/Gr) powders, with a focus on their electrochemical performance. Si/Gr powders in 20:80 weight ratio and 4 factor - 2 level full factorial design were used to find the main effects and interactions. Crystallite sizes were calculated using the Scherrer equation, and span values were obtained from the particle size distribution (PSD) analysis. SEM analyses were carried out to check the microstructure of powders. Ultimately, regression equations were created with high adjusted <em>R</em><sup>2</sup> values for crystallite size (93%), contamination (92%), and span (91%), respectively. Optimization experiments were carried out using the created regression equations, and the models were verified. It was found that crystallite size obtained by XRD data is more reliable to assess powder properties on the performance instead of PSD because of the agglomeration at the particle level throughout the milling. Further milling experiments were performed to elaborate the role of oxygen content and crystallite size. Results showed that while initial capacity is strongly related to total oxygen content, decay in the first cycles is correlated to the crystallite size of the silicon powder.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical approach for the preparation of silicon-graphite anodes: The role of oxygen content and crystallite size on electrochemical performance\",\"authors\":\"Alper Güneren,&nbsp;Zoltán Lenčéš\",\"doi\":\"10.1016/j.powtec.2024.119982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing the overall performance of Si-based anodes is still challenging because of the influence of various parameters involved in the preparation processes. This study addresses this challenge by employing the design of experiment technique to assess the impact of ball milling parameters such as milling speed, time, ball to powder and medium to powder ratio on the properties of silicon/graphite (Si/Gr) powders, with a focus on their electrochemical performance. Si/Gr powders in 20:80 weight ratio and 4 factor - 2 level full factorial design were used to find the main effects and interactions. Crystallite sizes were calculated using the Scherrer equation, and span values were obtained from the particle size distribution (PSD) analysis. SEM analyses were carried out to check the microstructure of powders. Ultimately, regression equations were created with high adjusted <em>R</em><sup>2</sup> values for crystallite size (93%), contamination (92%), and span (91%), respectively. Optimization experiments were carried out using the created regression equations, and the models were verified. It was found that crystallite size obtained by XRD data is more reliable to assess powder properties on the performance instead of PSD because of the agglomeration at the particle level throughout the milling. Further milling experiments were performed to elaborate the role of oxygen content and crystallite size. Results showed that while initial capacity is strongly related to total oxygen content, decay in the first cycles is correlated to the crystallite size of the silicon powder.</p></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024006259\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024006259","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于制备过程中涉及的各种参数的影响,提高硅基阳极的整体性能仍然具有挑战性。本研究针对这一挑战,采用实验设计技术评估球磨参数(如研磨速度、时间、球粉比和介质粉比)对硅/石墨(Si/Gr)粉末性能的影响,重点关注其电化学性能。硅/石墨(Si/Gr)粉末的重量比为 20:80,采用 4 因子 2 级全因子设计来找出主效应和交互作用。利用舍勒方程计算了晶体尺寸,并通过粒度分布(PSD)分析获得了跨度值。扫描电镜分析用于检查粉末的微观结构。最终,建立的回归方程在晶粒大小(93%)、污染(92%)和跨度(91%)方面分别具有较高的调整 R2 值。利用建立的回归方程进行了优化实验,并对模型进行了验证。结果发现,在评估粉末性能时,XRD 数据获得的结晶粒度比 PSD 更可靠,因为在整个研磨过程中,颗粒会发生团聚。为了详细说明氧含量和晶粒尺寸的作用,还进行了进一步的研磨实验。结果表明,虽然初始容量与总氧含量密切相关,但第一周期的衰减与硅粉的晶粒大小有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical approach for the preparation of silicon-graphite anodes: The role of oxygen content and crystallite size on electrochemical performance

Increasing the overall performance of Si-based anodes is still challenging because of the influence of various parameters involved in the preparation processes. This study addresses this challenge by employing the design of experiment technique to assess the impact of ball milling parameters such as milling speed, time, ball to powder and medium to powder ratio on the properties of silicon/graphite (Si/Gr) powders, with a focus on their electrochemical performance. Si/Gr powders in 20:80 weight ratio and 4 factor - 2 level full factorial design were used to find the main effects and interactions. Crystallite sizes were calculated using the Scherrer equation, and span values were obtained from the particle size distribution (PSD) analysis. SEM analyses were carried out to check the microstructure of powders. Ultimately, regression equations were created with high adjusted R2 values for crystallite size (93%), contamination (92%), and span (91%), respectively. Optimization experiments were carried out using the created regression equations, and the models were verified. It was found that crystallite size obtained by XRD data is more reliable to assess powder properties on the performance instead of PSD because of the agglomeration at the particle level throughout the milling. Further milling experiments were performed to elaborate the role of oxygen content and crystallite size. Results showed that while initial capacity is strongly related to total oxygen content, decay in the first cycles is correlated to the crystallite size of the silicon powder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Editorial Board Graphical abstract TOC Graphical abstract TOC Contents continued Development of a versatile method for predicting the density of monocomponent dry fine materials compacts based on comparative study of compression factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1