{"title":"全面分析 CPR 细菌 rRNA 基因内的插入序列以及这些序列编码的归巢内切酶的生化特征。","authors":"Megumi Tsurumaki, Asako Sato, Motofumi Saito, Akio Kanai","doi":"10.1128/jb.00074-24","DOIUrl":null,"url":null,"abstract":"<p><p>The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of <i>Candidatus</i> (<i>Ca</i>.) Saccharibacteria and the 16S rRNA genes of <i>Ca</i>. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from <i>Ca</i>. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs.</p><p><strong>Importance: </strong>Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0007424"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences.\",\"authors\":\"Megumi Tsurumaki, Asako Sato, Motofumi Saito, Akio Kanai\",\"doi\":\"10.1128/jb.00074-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of <i>Candidatus</i> (<i>Ca</i>.) Saccharibacteria and the 16S rRNA genes of <i>Ca</i>. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from <i>Ca</i>. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs.</p><p><strong>Importance: </strong>Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0007424\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00074-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00074-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
候选菌系辐射(CPR)是一个广泛的细菌支系,主要由未培养的菌系组成,其 rRNA 基因中插入序列(ISs)的大量存在使其有别于其他细菌。然而,我们对这些 ISs 的分类分布和特征的了解仍然有限。在本研究中,我们采用了一种全面的方法来系统地确定 CPR 细菌中 rRNA ISs 的性质。对 65 个 CPR 支系的数百个 rRNA 基因序列进行分析后发现,48% 的 16S rRNA 基因和 82% 的 23S rRNA 基因中存在 ISs,这表明 ISs 在 CPR 支系中分布广泛,但在 Candidatus (Ca.) Saccharibacteria 的 16S 和 23S rRNA 基因以及 Ca.Peregrinibacteria 的 16S rRNA 基因。半数以上的 ISs 显示出类似于 I 组内含子的结构,而特定的 16S rRNA 基因 ISs 则显示出类似于 II 组内含子的特征。ISs 经常编码以 LAGLIDADG 主题为中心的具有归巢内切酶(HE)结构域的蛋白质。由 CPR 细菌 rRNA ISs 编码的 LAGLIDADG HE(LHE)蛋白主要具有单链结构,不同于在典型原核生物 LHE 中观察到的通常的单链或双链结构。对来自 Ca.Shapirobacteria 中的一种 LHE 蛋白 I-ShaI 的实验分析证实,它的内切酶活性以其插入位点的 DNA 序列为目标,化学交联实验证明了它形成同源二聚体的能力。这些结果为以下假设提供了有力证据:CPR 细菌中 rRNA ISs 的爆炸性增殖是由涉及 LHEs 的机制促成的:在大多数细菌门中,rRNA 基因中的插入序列(ISs)相对有限且不常见。通过全面的生物信息学分析,我们发现在 CPR 细菌中,48% 的 16S rRNA 基因和 82% 的 23S rRNA 基因中都存在插入序列。我们还报告了由这些 ISs 编码的 LAGLIDADG 同源内切酶(LHEs)的系统和生化特征,这是首次对 CPR 细菌进行此类分析。这项研究极大地扩展了我们对 rRNA ISs 在 CPR 细菌中的系统发育位置及其 LHEs 的生化特征的了解。
Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences.
The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs.
Importance: Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.