利用DNA捕获策略检测不同HBV疾病血浆无细胞DNA中的HBV DNA整合。

IF 5.5 3区 医学 Q1 Medicine Virologica Sinica Pub Date : 2024-08-01 DOI:10.1016/j.virs.2024.06.003
{"title":"利用DNA捕获策略检测不同HBV疾病血浆无细胞DNA中的HBV DNA整合。","authors":"","doi":"10.1016/j.virs.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. <em>In vivo</em> analysis showed that the normalized number of support unique sequences (<em>nnsus</em>) in HCC was significantly higher than in CHB or LC patients (<em>P</em> values ​&lt; ​0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.</p></div>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":"39 4","pages":"Pages 655-666"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1995820X24000828/pdfft?md5=c59234e1ed45ce52f4e2926238f136d0&pid=1-s2.0-S1995820X24000828-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of HBV DNA integration in plasma cell-free DNA of different HBV diseases utilizing DNA capture strategy\",\"authors\":\"\",\"doi\":\"10.1016/j.virs.2024.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. <em>In vivo</em> analysis showed that the normalized number of support unique sequences (<em>nnsus</em>) in HCC was significantly higher than in CHB or LC patients (<em>P</em> values ​&lt; ​0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.</p></div>\",\"PeriodicalId\":23654,\"journal\":{\"name\":\"Virologica Sinica\",\"volume\":\"39 4\",\"pages\":\"Pages 655-666\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1995820X24000828/pdfft?md5=c59234e1ed45ce52f4e2926238f136d0&pid=1-s2.0-S1995820X24000828-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995820X24000828\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995820X24000828","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

不同阶段肝病(慢性乙型肝炎(CHB)、肝硬化(LC)和肝细胞癌(HCC))的 HBV 感染者血浆无细胞 DNA(cfDNA)中的乙型肝炎病毒(HBV)整合情况仍不清楚。在这项研究中,我们开发了一种基于 DNA 探针捕获和新一代测序的血浆 cfDNA 中 HBV DNA 整合检测改进策略。利用这种优化策略,我们成功地检测了嵌合人工 DNA 样本和感染后第一天的 HBV 感染 HepG2-NTCP 细胞中的 HBV 整合事件,灵敏度和准确性都很高。我们进一步研究了 HBV 感染的 HepG2-NTCP 细胞和 HBV 感染者(CHB、LC 和 HCC)血浆 cfDNA 中 HBV 整合事件的特征。在 HepG2-NTCP 细胞和 25 份临床 HBV 感染样本中的 22 份(88%)中分别检测到 112 个和 333 个整合断点。体内分析表明,HCC 患者的归一化支持独特序列数(nnsus)明显高于 CHB 或 LC 患者(P 值小于 0.05)。所有整合断点都随机分布在人类染色体上,并在 HBV 基因组中 nt1800 附近富集。大多数整合断点(61.86%)位于基因编码区。非同源末端连接(NHEJ)和微同源介导的末端连接(MMEJ)相互作用发生在肝病三个不同阶段的 HBV 整合过程中。我们的研究提供了证据,证明使用这种优化策略可以在HBV感染者(包括CHB、LC或HCC患者)的血浆cfDNA中检测到HBV DNA整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of HBV DNA integration in plasma cell-free DNA of different HBV diseases utilizing DNA capture strategy

The landscape of hepatitis B virus (HBV) integration in the plasma cell-free DNA (cfDNA) of HBV-infected patients with different stages of liver diseases [chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC)] remains unclear. In this study, we developed an improved strategy for detecting HBV DNA integration in plasma cfDNA, based on DNA probe capture and next-generation sequencing. Using this optimized strategy, we successfully detected HBV integration events in chimeric artificial DNA samples and HBV-infected HepG2-NTCP cells at day one post infection, with high sensitivity and accuracy. The characteristics of HBV integration events in the HBV-infected HepG2-NTCP cells and plasma cfDNA from HBV-infected individuals (CHB, LC, and HCC) were further investigated. A total of 112 and 333 integration breakpoints were detected in the HepG2-NTCP cells and 22 out of 25 (88%) clinical HBV-infected samples, respectively. In vivo analysis showed that the normalized number of support unique sequences (nnsus) in HCC was significantly higher than in CHB or LC patients (P values ​< ​0.05). All integration breakpoints are randomly distributed on human chromosomes and are enriched in the HBV genome around nt 1800. The majority of integration breakpoints (61.86%) are located in the gene-coding region. Both non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ) interactions occurred during HBV integration across the three different stages of liver diseases. Our study provides evidence that HBV DNA integration can be detected in the plasma cfDNA of HBV-infected patients, including those with CHB, LC, or HCC, using this optimized strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Virologica Sinica
Virologica Sinica Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍: Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context. Electronic ISSN: 1995-820X; Print ISSN: 1674-0769
期刊最新文献
Identification and genetic analysis of new ephemeroviruses in wild boars in China. Zika virus transmission in Aedes aegypti: a systematic study on the ability of mosquitoes to transmit the virus horizontally and vertically. Current Antiviral Therapies and Promising Drug Candidates against Respiratory Syncytial Virus Infection. Evaluating the performance of the PREDAC method in flu vaccine recommendations over the past decade (2013-2023). Characterization of novel highly pathogenic avian influenza A(H5N6) clade 2.3.4.4b virus in wild birds, East China, 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1