整合基因组学、表型组学和深度学习,提高冬小麦镰刀菌头孢疫病相关性状的预测能力。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2024-06-09 DOI:10.1002/tpg2.20470
Subash Thapa, Harsimardeep S Gill, Jyotirmoy Halder, Anshul Rana, Shaukat Ali, Maitiniyazi Maimaitijiang, Upinder Gill, Amy Bernardo, Paul St Amand, Guihua Bai, Sunish K Sehgal
{"title":"整合基因组学、表型组学和深度学习,提高冬小麦镰刀菌头孢疫病相关性状的预测能力。","authors":"Subash Thapa, Harsimardeep S Gill, Jyotirmoy Halder, Anshul Rana, Shaukat Ali, Maitiniyazi Maimaitijiang, Upinder Gill, Amy Bernardo, Paul St Amand, Guihua Bai, Sunish K Sehgal","doi":"10.1002/tpg2.20470","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON), is either prone to human biases or resource expensive, hindering the progress in breeding for FHB-resistant cultivars. Though genomic selection (GS) can be an effective way to select these traits, inaccurate phenotyping remains a hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based precise FDK estimation that exhibits high heritability and correlation with DON. Further, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V). Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT) GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with days to heading as covariates improved the PA for DON by 58% over the baseline single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat kernels as a novel avenue to improve the MT GS for DON. The PA for DON using selected wavebands derived from hyperspectral imaging in MT GS models surpassed the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction for DON by integrating hyperspectral imaging with deep learning to directly predict DON in FHB-infected wheat kernels and observed an accuracy (R<sup>2</sup> = 0.45) comparable to best-performing MT GS models. This study demonstrates the potential application of AI and vision-based platforms to improve PA for FHB-related traits using genomic and phenomic selection.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.\",\"authors\":\"Subash Thapa, Harsimardeep S Gill, Jyotirmoy Halder, Anshul Rana, Shaukat Ali, Maitiniyazi Maimaitijiang, Upinder Gill, Amy Bernardo, Paul St Amand, Guihua Bai, Sunish K Sehgal\",\"doi\":\"10.1002/tpg2.20470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON), is either prone to human biases or resource expensive, hindering the progress in breeding for FHB-resistant cultivars. Though genomic selection (GS) can be an effective way to select these traits, inaccurate phenotyping remains a hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based precise FDK estimation that exhibits high heritability and correlation with DON. Further, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V). Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT) GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with days to heading as covariates improved the PA for DON by 58% over the baseline single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat kernels as a novel avenue to improve the MT GS for DON. The PA for DON using selected wavebands derived from hyperspectral imaging in MT GS models surpassed the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction for DON by integrating hyperspectral imaging with deep learning to directly predict DON in FHB-infected wheat kernels and observed an accuracy (R<sup>2</sup> = 0.45) comparable to best-performing MT GS models. This study demonstrates the potential application of AI and vision-based platforms to improve PA for FHB-related traits using genomic and phenomic selection.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20470\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20470","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

镰孢菌头孢疫病(FHB)仍然是小麦(Triticum aestivum L.)中破坏性最强的病害之一,对产量和最终使用质量造成了巨大损失。对 FHB 抗性性状、镰刀菌损伤籽粒(FDK)和脱氧雪腐镰刀菌烯醇(DON)的表型分析,要么容易出现人为偏差,要么资源昂贵,阻碍了抗 FHB 栽培品种的育种进展。虽然基因组选择(GS)是选择这些性状的有效方法,但表型不准确仍是利用这种方法的障碍。在这里,我们使用了一种基于人工智能(AI)的精确 FDK 估算方法,该方法表现出较高的遗传率以及与 DON 的相关性。此外,使用基于人工智能的 FDK(FDK_QVIS/FDK_QNIR)的 GS 与使用传统估计的 FDK(FDK_V)的 GS 相比,预测能力(PA)提高了两倍。接下来,对基于人工智能的 FDK 和多性状(MT)GS 模型中的其他性状进行了评估,以预测 DON。将 FDK_QNIR 和 FDK_QVIS 以及茎秆生长天数作为协变量,与基线单一性状 GS 模型相比,DON 的 PA 提高了 58%。接下来,我们利用受 FHB 感染的小麦籽粒的高光谱成像技术作为改进 DON 的 MT GS 的新途径。在 MT GS 模型中使用高光谱成像得出的选定波段对 DON 的 PA 值超过了单一性状 GS 模型约 40%。最后,我们评估了通过将高光谱成像与深度学习相结合来直接预测受 FHB 感染的小麦籽粒中 DON 的表观预测结果,观察到其准确率(R2 = 0.45)与表现最佳的 MT GS 模型相当。这项研究展示了人工智能和基于视觉的平台在利用基因组和表型组选择改善 FHB 相关性状的 PA 方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating genomics, phenomics, and deep learning improves the predictive ability for Fusarium head blight-related traits in winter wheat.

Fusarium head blight (FHB) remains one of the most destructive diseases of wheat (Triticum aestivum L.), causing considerable losses in yield and end-use quality. Phenotyping of FHB resistance traits, Fusarium-damaged kernels (FDK), and deoxynivalenol (DON), is either prone to human biases or resource expensive, hindering the progress in breeding for FHB-resistant cultivars. Though genomic selection (GS) can be an effective way to select these traits, inaccurate phenotyping remains a hurdle in exploiting this approach. Here, we used an artificial intelligence (AI)-based precise FDK estimation that exhibits high heritability and correlation with DON. Further, GS using AI-based FDK (FDK_QVIS/FDK_QNIR) showed a two-fold increase in predictive ability (PA) compared to GS for traditionally estimated FDK (FDK_V). Next, the AI-based FDK was evaluated along with other traits in multi-trait (MT) GS models to predict DON. The inclusion of FDK_QNIR and FDK_QVIS with days to heading as covariates improved the PA for DON by 58% over the baseline single-trait GS model. We next used hyperspectral imaging of FHB-infected wheat kernels as a novel avenue to improve the MT GS for DON. The PA for DON using selected wavebands derived from hyperspectral imaging in MT GS models surpassed the single-trait GS model by around 40%. Finally, we evaluated phenomic prediction for DON by integrating hyperspectral imaging with deep learning to directly predict DON in FHB-infected wheat kernels and observed an accuracy (R2 = 0.45) comparable to best-performing MT GS models. This study demonstrates the potential application of AI and vision-based platforms to improve PA for FHB-related traits using genomic and phenomic selection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Genome-wide association study uncovers pea candidate genes and metabolic pathways involved in rust resistance. Introducing CHiDO-A No Code Genomic Prediction software implementation for the characterization and integration of driven omics. Studies of genetic diversity and genome-wide association for vitamin C content in lettuce (Lactuca sativa L.) using high-throughput SNP arrays. Translating weighted probabilistic bits to synthetic genetic circuits. Functional analysis of PagERF021 gene in salt stress tolerance in Populus alba × P. glandulosa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1