一类地点尺度检验的鞍点 p 值。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-06-10 DOI:10.1080/10543406.2024.2358810
Abd El-Raheem M Abd El-Raheem, Haidy N Mohamed, Ehab F Abd-Elfattah
{"title":"一类地点尺度检验的鞍点 p 值。","authors":"Abd El-Raheem M Abd El-Raheem, Haidy N Mohamed, Ehab F Abd-Elfattah","doi":"10.1080/10543406.2024.2358810","DOIUrl":null,"url":null,"abstract":"<p><p>The main idea of this paper is to approximate the exact p-value of a class of non-parametric, two-sample location-scale tests. In this paper, the most famous non-parametric two-sample location-scale tests are formulated in a class of linear rank tests. The permutation distribution of this class is derived from a random allocation design. This allows us to approximate the exact p-value of the non-parametric two-sample location-scale tests of the considered class using the saddlepoint approximation method. The proposed method shows high accuracy in approximating the exact p-value compared to the normal approximation method. Moreover, the proposed method only requires a few calculations and time, as in the case of the simulated method. The procedures of the proposed method are clarified through four sets of real data that represent applications for a number of different fields. In addition, a simulation study compares the proposed method with the traditional methods to approximate the exact p-value of the specified class of the non-parametric two-sample location-scale tests.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-20"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saddlepoint p-values for a class of location-scale tests.\",\"authors\":\"Abd El-Raheem M Abd El-Raheem, Haidy N Mohamed, Ehab F Abd-Elfattah\",\"doi\":\"10.1080/10543406.2024.2358810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main idea of this paper is to approximate the exact p-value of a class of non-parametric, two-sample location-scale tests. In this paper, the most famous non-parametric two-sample location-scale tests are formulated in a class of linear rank tests. The permutation distribution of this class is derived from a random allocation design. This allows us to approximate the exact p-value of the non-parametric two-sample location-scale tests of the considered class using the saddlepoint approximation method. The proposed method shows high accuracy in approximating the exact p-value compared to the normal approximation method. Moreover, the proposed method only requires a few calculations and time, as in the case of the simulated method. The procedures of the proposed method are clarified through four sets of real data that represent applications for a number of different fields. In addition, a simulation study compares the proposed method with the traditional methods to approximate the exact p-value of the specified class of the non-parametric two-sample location-scale tests.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2358810\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2358810","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要思想是近似计算一类非参数双样本位置标度检验的精确 p 值。本文将最著名的非参数双样本位置标度检验归结为一类线性秩检验。该类检验的置换分布来自随机分配设计。因此,我们可以利用鞍点近似法近似得到该类非参数双样本位置标度检验的精确 p 值。与正态近似法相比,所提出的方法在近似精确 p 值方面具有很高的准确性。此外,与模拟方法一样,拟议方法只需要少量计算和时间。通过四组真实数据(代表多个不同领域的应用),阐明了拟议方法的程序。此外,模拟研究比较了建议的方法和传统方法,以逼近非参数双样本位置尺度检验指定类别的精确 p 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saddlepoint p-values for a class of location-scale tests.

The main idea of this paper is to approximate the exact p-value of a class of non-parametric, two-sample location-scale tests. In this paper, the most famous non-parametric two-sample location-scale tests are formulated in a class of linear rank tests. The permutation distribution of this class is derived from a random allocation design. This allows us to approximate the exact p-value of the non-parametric two-sample location-scale tests of the considered class using the saddlepoint approximation method. The proposed method shows high accuracy in approximating the exact p-value compared to the normal approximation method. Moreover, the proposed method only requires a few calculations and time, as in the case of the simulated method. The procedures of the proposed method are clarified through four sets of real data that represent applications for a number of different fields. In addition, a simulation study compares the proposed method with the traditional methods to approximate the exact p-value of the specified class of the non-parametric two-sample location-scale tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1