Tetsuro Wakatsuki , Neil Daily , Sunao Hisada , Kazuto Nunomura , Bangzhong Lin , Ko Zushida , Yayoi Honda , Mahoko Asyama , Kiyoshi Takasuna
{"title":"贝叶斯方法能够客观地比较多种源于人类 iPSC 的心肌细胞对原心律失常的敏感性。","authors":"Tetsuro Wakatsuki , Neil Daily , Sunao Hisada , Kazuto Nunomura , Bangzhong Lin , Ko Zushida , Yayoi Honda , Mahoko Asyama , Kiyoshi Takasuna","doi":"10.1016/j.vascn.2024.107531","DOIUrl":null,"url":null,"abstract":"<div><p>The one-size-fits-all approach has been the mainstream in medicine, and the well-defined standards support the development of safe and effective therapies for many years. Advancing technologies, however, enabled precision medicine to treat a targeted patient population (e.g., HER2+ cancer). In safety pharmacology, computational population modeling has been successfully applied in virtual clinical trials to predict drug-induced proarrhythmia risks against a wide range of pseudo cohorts. In the meantime, population modeling in safety pharmacology experiments has been challenging. Here, we used five commercially available human iPSC-derived cardiomyocytes growing in 384-well plates and analyzed the effects of ten potential proarrhythmic compounds with four concentrations on their calcium transients (CaTs). All the cell lines exhibited an expected elongation or shortening of calcium transient duration with various degrees. Depending on compounds inhibiting several ion channels, such as hERG, peak and late sodium and L-type calcium or IKs channels, some of the cell lines exhibited irregular, discontinuous beating that was not predicted by computational simulations. To analyze the shapes of CaTs and irregularities of beat patterns comprehensively, we defined six parameters to characterize compound-induced CaT waveform changes, successfully visualizing the similarities and differences in compound-induced proarrhythmic sensitivities of different cell lines. We applied Bayesian statistics to predict sample populations based on experimental data to overcome the limited number of experimental replicates in high-throughput assays. This process facilitated the principal component analysis to classify compound-induced sensitivities of cell lines objectively. Finally, the association of sensitivities in compound-induced changes between phenotypic parameters and ion channel inhibitions measured using patch clamp recording was analyzed. Successful ranking of compound-induced sensitivity of cell lines was in lined with visual inspection of raw data.</p></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"128 ","pages":"Article 107531"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1056871924000418/pdfft?md5=699507b15066af6598bd8f1a9b17a41f&pid=1-s2.0-S1056871924000418-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian approach enabled objective comparison of multiple human iPSC-derived Cardiomyocytes' Proarrhythmia sensitivities.\",\"authors\":\"Tetsuro Wakatsuki , Neil Daily , Sunao Hisada , Kazuto Nunomura , Bangzhong Lin , Ko Zushida , Yayoi Honda , Mahoko Asyama , Kiyoshi Takasuna\",\"doi\":\"10.1016/j.vascn.2024.107531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The one-size-fits-all approach has been the mainstream in medicine, and the well-defined standards support the development of safe and effective therapies for many years. Advancing technologies, however, enabled precision medicine to treat a targeted patient population (e.g., HER2+ cancer). In safety pharmacology, computational population modeling has been successfully applied in virtual clinical trials to predict drug-induced proarrhythmia risks against a wide range of pseudo cohorts. In the meantime, population modeling in safety pharmacology experiments has been challenging. Here, we used five commercially available human iPSC-derived cardiomyocytes growing in 384-well plates and analyzed the effects of ten potential proarrhythmic compounds with four concentrations on their calcium transients (CaTs). All the cell lines exhibited an expected elongation or shortening of calcium transient duration with various degrees. Depending on compounds inhibiting several ion channels, such as hERG, peak and late sodium and L-type calcium or IKs channels, some of the cell lines exhibited irregular, discontinuous beating that was not predicted by computational simulations. To analyze the shapes of CaTs and irregularities of beat patterns comprehensively, we defined six parameters to characterize compound-induced CaT waveform changes, successfully visualizing the similarities and differences in compound-induced proarrhythmic sensitivities of different cell lines. We applied Bayesian statistics to predict sample populations based on experimental data to overcome the limited number of experimental replicates in high-throughput assays. This process facilitated the principal component analysis to classify compound-induced sensitivities of cell lines objectively. Finally, the association of sensitivities in compound-induced changes between phenotypic parameters and ion channel inhibitions measured using patch clamp recording was analyzed. Successful ranking of compound-induced sensitivity of cell lines was in lined with visual inspection of raw data.</p></div>\",\"PeriodicalId\":16767,\"journal\":{\"name\":\"Journal of pharmacological and toxicological methods\",\"volume\":\"128 \",\"pages\":\"Article 107531\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1056871924000418/pdfft?md5=699507b15066af6598bd8f1a9b17a41f&pid=1-s2.0-S1056871924000418-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological and toxicological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1056871924000418\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056871924000418","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bayesian approach enabled objective comparison of multiple human iPSC-derived Cardiomyocytes' Proarrhythmia sensitivities.
The one-size-fits-all approach has been the mainstream in medicine, and the well-defined standards support the development of safe and effective therapies for many years. Advancing technologies, however, enabled precision medicine to treat a targeted patient population (e.g., HER2+ cancer). In safety pharmacology, computational population modeling has been successfully applied in virtual clinical trials to predict drug-induced proarrhythmia risks against a wide range of pseudo cohorts. In the meantime, population modeling in safety pharmacology experiments has been challenging. Here, we used five commercially available human iPSC-derived cardiomyocytes growing in 384-well plates and analyzed the effects of ten potential proarrhythmic compounds with four concentrations on their calcium transients (CaTs). All the cell lines exhibited an expected elongation or shortening of calcium transient duration with various degrees. Depending on compounds inhibiting several ion channels, such as hERG, peak and late sodium and L-type calcium or IKs channels, some of the cell lines exhibited irregular, discontinuous beating that was not predicted by computational simulations. To analyze the shapes of CaTs and irregularities of beat patterns comprehensively, we defined six parameters to characterize compound-induced CaT waveform changes, successfully visualizing the similarities and differences in compound-induced proarrhythmic sensitivities of different cell lines. We applied Bayesian statistics to predict sample populations based on experimental data to overcome the limited number of experimental replicates in high-throughput assays. This process facilitated the principal component analysis to classify compound-induced sensitivities of cell lines objectively. Finally, the association of sensitivities in compound-induced changes between phenotypic parameters and ion channel inhibitions measured using patch clamp recording was analyzed. Successful ranking of compound-induced sensitivity of cell lines was in lined with visual inspection of raw data.
期刊介绍:
Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.