{"title":"苯硫脲介导的实验性色素沉着可降低斑马鱼幼体对戊烯四唑的癫痫反应。","authors":"Savita Kumari , Damanpreet Singh","doi":"10.1016/j.vascn.2024.107532","DOIUrl":null,"url":null,"abstract":"<div><p>Zebrafish larvae exposed to chemoconvulsants show behavioral seizures and electrographic abnormalities similar to the other mammalian models, making it a potential tool in epilepsy research. During the embryonic stage, zebrafish remains transparent which enables real-time developmental detection and <em>in-situ</em> gene/protein expression. However, pigmentation during the larval stage restricts transparency. Phenylthiourea (1-phenyl-2-thiourea; PTU) is a commonly used pigmentation blocker that maintains larval transparency. It is widely used along with chemoconvulsants to study <em>in situ</em> expressions in epileptic larvae, however, its effect on seizures largely remains unknown. Therefore, in the present study, the effect of PTU-mediated depigmentation was studied on pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. After spawning, the fish embryos were subjected to standard depigmentation protocol using 0.13 mM PTU. At 7-<em>days post fertilization</em> seizures were induced using 8 mM PTZ. PTU exposure significantly reduced PTZ-mediated hyperactive responses indicated by decreased distance travelled and swimming velocity of the larvae. Furthermore, PTU-exposed depigmented larvae also showed an increase in the latency to the onset of PTZ-mediated clonic-like seizures. The results concluded that PTU depigmentation protocol reduces the seizurogenic response of PTZ, hence its usage for imaging zebrafish larvae must be carefully monitored to avoid erroneous results.</p></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"128 ","pages":"Article 107532"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenylthiourea-mediated experimental depigmentation reduces seizurogenic response of pentylenetetrazol in zebrafish larva\",\"authors\":\"Savita Kumari , Damanpreet Singh\",\"doi\":\"10.1016/j.vascn.2024.107532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zebrafish larvae exposed to chemoconvulsants show behavioral seizures and electrographic abnormalities similar to the other mammalian models, making it a potential tool in epilepsy research. During the embryonic stage, zebrafish remains transparent which enables real-time developmental detection and <em>in-situ</em> gene/protein expression. However, pigmentation during the larval stage restricts transparency. Phenylthiourea (1-phenyl-2-thiourea; PTU) is a commonly used pigmentation blocker that maintains larval transparency. It is widely used along with chemoconvulsants to study <em>in situ</em> expressions in epileptic larvae, however, its effect on seizures largely remains unknown. Therefore, in the present study, the effect of PTU-mediated depigmentation was studied on pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. After spawning, the fish embryos were subjected to standard depigmentation protocol using 0.13 mM PTU. At 7-<em>days post fertilization</em> seizures were induced using 8 mM PTZ. PTU exposure significantly reduced PTZ-mediated hyperactive responses indicated by decreased distance travelled and swimming velocity of the larvae. Furthermore, PTU-exposed depigmented larvae also showed an increase in the latency to the onset of PTZ-mediated clonic-like seizures. The results concluded that PTU depigmentation protocol reduces the seizurogenic response of PTZ, hence its usage for imaging zebrafish larvae must be carefully monitored to avoid erroneous results.</p></div>\",\"PeriodicalId\":16767,\"journal\":{\"name\":\"Journal of pharmacological and toxicological methods\",\"volume\":\"128 \",\"pages\":\"Article 107532\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological and toxicological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S105687192400042X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105687192400042X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Phenylthiourea-mediated experimental depigmentation reduces seizurogenic response of pentylenetetrazol in zebrafish larva
Zebrafish larvae exposed to chemoconvulsants show behavioral seizures and electrographic abnormalities similar to the other mammalian models, making it a potential tool in epilepsy research. During the embryonic stage, zebrafish remains transparent which enables real-time developmental detection and in-situ gene/protein expression. However, pigmentation during the larval stage restricts transparency. Phenylthiourea (1-phenyl-2-thiourea; PTU) is a commonly used pigmentation blocker that maintains larval transparency. It is widely used along with chemoconvulsants to study in situ expressions in epileptic larvae, however, its effect on seizures largely remains unknown. Therefore, in the present study, the effect of PTU-mediated depigmentation was studied on pentylenetetrazol (PTZ)-induced seizures in zebrafish larvae. After spawning, the fish embryos were subjected to standard depigmentation protocol using 0.13 mM PTU. At 7-days post fertilization seizures were induced using 8 mM PTZ. PTU exposure significantly reduced PTZ-mediated hyperactive responses indicated by decreased distance travelled and swimming velocity of the larvae. Furthermore, PTU-exposed depigmented larvae also showed an increase in the latency to the onset of PTZ-mediated clonic-like seizures. The results concluded that PTU depigmentation protocol reduces the seizurogenic response of PTZ, hence its usage for imaging zebrafish larvae must be carefully monitored to avoid erroneous results.
期刊介绍:
Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.