用于解释基于成本敏感树模型的成本敏感树 SHAP

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computational Intelligence Pub Date : 2024-06-09 DOI:10.1111/coin.12651
Marija Kopanja, Stefan Hačko, Sanja Brdar, Miloš Savić
{"title":"用于解释基于成本敏感树模型的成本敏感树 SHAP","authors":"Marija Kopanja,&nbsp;Stefan Hačko,&nbsp;Sanja Brdar,&nbsp;Miloš Savić","doi":"10.1111/coin.12651","DOIUrl":null,"url":null,"abstract":"<p>Cost-sensitive ensemble learning as a combination of two approaches, ensemble learning and cost-sensitive learning, enables generation of cost-sensitive tree-based ensemble models using the cost-sensitive decision tree (CSDT) learning algorithm. In general, tree-based models characterize nice graphical representation that can explain a model's decision-making process. However, the depth of the tree and the number of base models in the ensemble can be a limiting factor in comprehending the model's decision for each sample. The CSDT models are widely used in finance (e.g., credit scoring and fraud detection) but lack effective explanation methods. We previously addressed this gap with cost-sensitive tree Shapley Additive Explanation Method (CSTreeSHAP), a cost-sensitive tree explanation method for the single-tree CSDT model. Here, we extend the introduced methodology to cost-sensitive ensemble models, particularly cost-sensitive random forest models. The paper details the theoretical foundation and implementation details of CSTreeSHAP for both single CSDT and ensemble models. The usefulness of the proposed method is demonstrated by providing explanations for single and ensemble CSDT models trained on well-known benchmark credit scoring datasets. Finally, we apply our methodology and analyze the stability of explanations for those models compared to the cost-insensitive tree-based models. Our analysis reveals statistically significant differences between SHAP values despite seemingly similar global feature importance plots of the models. This highlights the value of our methodology as a comprehensive tool for explaining CSDT models.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-sensitive tree SHAP for explaining cost-sensitive tree-based models\",\"authors\":\"Marija Kopanja,&nbsp;Stefan Hačko,&nbsp;Sanja Brdar,&nbsp;Miloš Savić\",\"doi\":\"10.1111/coin.12651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cost-sensitive ensemble learning as a combination of two approaches, ensemble learning and cost-sensitive learning, enables generation of cost-sensitive tree-based ensemble models using the cost-sensitive decision tree (CSDT) learning algorithm. In general, tree-based models characterize nice graphical representation that can explain a model's decision-making process. However, the depth of the tree and the number of base models in the ensemble can be a limiting factor in comprehending the model's decision for each sample. The CSDT models are widely used in finance (e.g., credit scoring and fraud detection) but lack effective explanation methods. We previously addressed this gap with cost-sensitive tree Shapley Additive Explanation Method (CSTreeSHAP), a cost-sensitive tree explanation method for the single-tree CSDT model. Here, we extend the introduced methodology to cost-sensitive ensemble models, particularly cost-sensitive random forest models. The paper details the theoretical foundation and implementation details of CSTreeSHAP for both single CSDT and ensemble models. The usefulness of the proposed method is demonstrated by providing explanations for single and ensemble CSDT models trained on well-known benchmark credit scoring datasets. Finally, we apply our methodology and analyze the stability of explanations for those models compared to the cost-insensitive tree-based models. Our analysis reveals statistically significant differences between SHAP values despite seemingly similar global feature importance plots of the models. This highlights the value of our methodology as a comprehensive tool for explaining CSDT models.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

成本敏感集合学习是集合学习和成本敏感学习这两种方法的结合,它能利用成本敏感决策树(CSDT)学习算法生成基于树的成本敏感集合模型。一般来说,基于树的模型具有良好的图形表示特性,可以解释模型的决策过程。然而,树的深度和集合中基础模型的数量可能会成为理解模型对每个样本决策的限制因素。CSDT 模型被广泛应用于金融领域(如信用评分和欺诈检测),但缺乏有效的解释方法。针对这一缺陷,我们之前提出了成本敏感树夏普利加法解释方法(CSTreeSHAP),这是一种针对单树 CSDT 模型的成本敏感树解释方法。在这里,我们将介绍的方法扩展到成本敏感的集合模型,特别是成本敏感的随机森林模型。本文详细介绍了 CSTreeSHAP 在单树 CSDT 模型和集合模型中的理论基础和实现细节。通过对在知名基准信用评分数据集上训练的单个和集合 CSDT 模型的解释,证明了所提方法的实用性。最后,我们应用了我们的方法,并分析了与对成本不敏感的树状模型相比,这些模型解释的稳定性。我们的分析表明,尽管模型的全局特征重要性图看似相似,但 SHAP 值之间却存在显著的统计差异。这凸显了我们的方法作为解释 CSDT 模型的综合工具的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-sensitive tree SHAP for explaining cost-sensitive tree-based models

Cost-sensitive ensemble learning as a combination of two approaches, ensemble learning and cost-sensitive learning, enables generation of cost-sensitive tree-based ensemble models using the cost-sensitive decision tree (CSDT) learning algorithm. In general, tree-based models characterize nice graphical representation that can explain a model's decision-making process. However, the depth of the tree and the number of base models in the ensemble can be a limiting factor in comprehending the model's decision for each sample. The CSDT models are widely used in finance (e.g., credit scoring and fraud detection) but lack effective explanation methods. We previously addressed this gap with cost-sensitive tree Shapley Additive Explanation Method (CSTreeSHAP), a cost-sensitive tree explanation method for the single-tree CSDT model. Here, we extend the introduced methodology to cost-sensitive ensemble models, particularly cost-sensitive random forest models. The paper details the theoretical foundation and implementation details of CSTreeSHAP for both single CSDT and ensemble models. The usefulness of the proposed method is demonstrated by providing explanations for single and ensemble CSDT models trained on well-known benchmark credit scoring datasets. Finally, we apply our methodology and analyze the stability of explanations for those models compared to the cost-insensitive tree-based models. Our analysis reveals statistically significant differences between SHAP values despite seemingly similar global feature importance plots of the models. This highlights the value of our methodology as a comprehensive tool for explaining CSDT models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
期刊最新文献
Comprehensive analysis of feature-algorithm interactions for fall detection across age groups via machine learning An Efficient and Robust 3D Medical Image Classification Approach Based on 3D CNN, Time-Distributed 2D CNN-BLSTM Models, and mRMR Feature Selection Modified local Granger causality analysis based on Peter-Clark algorithm for multivariate time series prediction on IoT data A Benchmark Proposal for Non-Generative Fair Adversarial Learning Strategies Using a Fairness-Utility Trade-off Metric Synthetic Image Generation Using Deep Learning: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1