使用单层模型和混合模型进行电力系统负荷预测的深度学习技术比较分析

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Transactions on Electrical Energy Systems Pub Date : 2024-06-10 DOI:10.1155/2024/5587728
Jiyeon Jang, Beopsoo Kim, Insu Kim
{"title":"使用单层模型和混合模型进行电力系统负荷预测的深度学习技术比较分析","authors":"Jiyeon Jang,&nbsp;Beopsoo Kim,&nbsp;Insu Kim","doi":"10.1155/2024/5587728","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Accurate power load forecasting is critical to maintaining the stability and efficiency of power systems. However, due to the complex and fluctuating nature of power load patterns, physical calculations are often inefficient and time-consuming. In addition, traditional methods, known as statistical learning methods, require not only mathematical background and understanding but also statistical background and understanding. To overcome these difficulties, the authors proposed a simpler way to predict load by using artificial intelligence. This study investigated the performance of forecasting techniques, including three single-layer and seven hybrid multilayer deep learning models that combine them. This study also analyzed the effect of hyperparameters on the learning results by varying the epoch and activation functions. To evaluate and analyze the performance of the deep learning model, this study used load data from the power system in Jeju Island, Korea. In addition, this study included weather factors that may affect the load to improve the prediction performance. The prediction process is performed on the Python platform, and the model that showed the highest accuracy was LSTM-CNN, a hybrid combination of LSTM and CNN models. Considering both the maximum and minimum error, the error value was low at 0.231%. By providing detailed insights into the entire research process, including data collection, preprocessing, scaling, prediction, and analysis, this study provided valuable guidance for future research in this area.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2024 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5587728","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Deep Learning Techniques for Load Forecasting in Power Systems Using Single-Layer and Hybrid Models\",\"authors\":\"Jiyeon Jang,&nbsp;Beopsoo Kim,&nbsp;Insu Kim\",\"doi\":\"10.1155/2024/5587728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Accurate power load forecasting is critical to maintaining the stability and efficiency of power systems. However, due to the complex and fluctuating nature of power load patterns, physical calculations are often inefficient and time-consuming. In addition, traditional methods, known as statistical learning methods, require not only mathematical background and understanding but also statistical background and understanding. To overcome these difficulties, the authors proposed a simpler way to predict load by using artificial intelligence. This study investigated the performance of forecasting techniques, including three single-layer and seven hybrid multilayer deep learning models that combine them. This study also analyzed the effect of hyperparameters on the learning results by varying the epoch and activation functions. To evaluate and analyze the performance of the deep learning model, this study used load data from the power system in Jeju Island, Korea. In addition, this study included weather factors that may affect the load to improve the prediction performance. The prediction process is performed on the Python platform, and the model that showed the highest accuracy was LSTM-CNN, a hybrid combination of LSTM and CNN models. Considering both the maximum and minimum error, the error value was low at 0.231%. By providing detailed insights into the entire research process, including data collection, preprocessing, scaling, prediction, and analysis, this study provided valuable guidance for future research in this area.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5587728\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5587728\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5587728","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确的电力负荷预测对于保持电力系统的稳定性和效率至关重要。然而,由于电力负荷模式复杂多变,物理计算往往效率低下且耗时较长。此外,被称为统计学习方法的传统方法不仅需要数学背景和理解能力,还需要统计背景和理解能力。为了克服这些困难,作者提出了一种利用人工智能预测负荷的更简单方法。本研究调查了预测技术的性能,包括三个单层和七个混合多层深度学习模型的组合。本研究还通过改变epoch和激活函数,分析了超参数对学习结果的影响。为了评估和分析深度学习模型的性能,本研究使用了韩国济州岛电力系统的负荷数据。此外,本研究还纳入了可能影响负荷的天气因素,以提高预测性能。预测过程在 Python 平台上进行,显示出最高准确率的模型是 LSTM-CNN,这是 LSTM 和 CNN 模型的混合组合。考虑到最大和最小误差,误差值较低,仅为 0.231%。本研究详细介绍了数据收集、预处理、缩放、预测和分析等整个研究过程,为该领域的未来研究提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Deep Learning Techniques for Load Forecasting in Power Systems Using Single-Layer and Hybrid Models

Accurate power load forecasting is critical to maintaining the stability and efficiency of power systems. However, due to the complex and fluctuating nature of power load patterns, physical calculations are often inefficient and time-consuming. In addition, traditional methods, known as statistical learning methods, require not only mathematical background and understanding but also statistical background and understanding. To overcome these difficulties, the authors proposed a simpler way to predict load by using artificial intelligence. This study investigated the performance of forecasting techniques, including three single-layer and seven hybrid multilayer deep learning models that combine them. This study also analyzed the effect of hyperparameters on the learning results by varying the epoch and activation functions. To evaluate and analyze the performance of the deep learning model, this study used load data from the power system in Jeju Island, Korea. In addition, this study included weather factors that may affect the load to improve the prediction performance. The prediction process is performed on the Python platform, and the model that showed the highest accuracy was LSTM-CNN, a hybrid combination of LSTM and CNN models. Considering both the maximum and minimum error, the error value was low at 0.231%. By providing detailed insights into the entire research process, including data collection, preprocessing, scaling, prediction, and analysis, this study provided valuable guidance for future research in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
期刊最新文献
Grid Synchronization of the VSC-HVDC System Based on Virtual Synchronous Generator Control Strategy Enhanced Linear State Observer–Based PLL-Less Vector-Oriented Control Method for a Three-Phase PWM Rectifier A Decentralized Control of Cascaded-Type AC Microgrids Integrating Dispatchable and Nondispatchable Generations Virtual Inertial Control of Small- and Medium-Sized Wind Turbines on Mobile Offshore Platforms with DC Microgrids Research on Coordinated Oscillation Control Strategy of AC/DC Hybrid Distribution Network Based on Mixed-Integer Linear Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1