Sonam Parakh, Emma R Perri, Marta Vidal, Zeinab Takalloo, Cyril J Jagaraj, Prachi Mehta, Shu Yang, Colleen J Thomas, Ian P Blair, Yuning Hong, Julie D Atkin
{"title":"蛋白二硫化物同工酶内质网蛋白 57 (ERp57) 对神经元细胞中与 ALS 相关的突变 TDP-43 有保护作用。","authors":"Sonam Parakh, Emma R Perri, Marta Vidal, Zeinab Takalloo, Cyril J Jagaraj, Prachi Mehta, Shu Yang, Colleen J Thomas, Ian P Blair, Yuning Hong, Julie D Atkin","doi":"10.1007/s12017-024-08787-0","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1<sup>G93A</sup> mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43<sup>M337V</sup> from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43<sup>M337V</sup> and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"26 1","pages":"23"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protein Disulfide Isomerase Endoplasmic Reticulum Protein 57 (ERp57) is Protective Against ALS-Associated Mutant TDP-43 in Neuronal Cells.\",\"authors\":\"Sonam Parakh, Emma R Perri, Marta Vidal, Zeinab Takalloo, Cyril J Jagaraj, Prachi Mehta, Shu Yang, Colleen J Thomas, Ian P Blair, Yuning Hong, Julie D Atkin\",\"doi\":\"10.1007/s12017-024-08787-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1<sup>G93A</sup> mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43<sup>M337V</sup> from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43<sup>M337V</sup> and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.</p>\",\"PeriodicalId\":19304,\"journal\":{\"name\":\"NeuroMolecular Medicine\",\"volume\":\"26 1\",\"pages\":\"23\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroMolecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12017-024-08787-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08787-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
肌萎缩侧索硬化症(ALS)是一种影响运动神经元的严重神经退行性疾病。Tar-DNA结合蛋白-43(TDP-43)的病理形式涉及其在细胞质中的错定位和错误折叠包涵体的形成,几乎在所有ALS病例(97%)和约50%的相关疾病额颞叶痴呆(FTD)病例中都存在,这突出了其在神经退行性疾病中的重要性。先前的研究表明,内质网蛋白 57(ERp57)是氧化还原伴侣蛋白二硫化物异构酶(PDI)家族的成员,在神经细胞和转基因 SOD1G93A 小鼠模型中对与 ALS 相关的突变型超氧化物歧化酶(SOD1)具有保护作用。然而,ERp57是否对ALS中的病理性TDP-43具有保护作用仍不清楚。在这里,我们证明了ERp57对神经元细胞中TDP-43病理学的关键特征具有保护作用。ERp57抑制了TDP-43M337V从细胞核向细胞质的错定位。此外,ERp57还抑制了ALS相关变体TDP-43M337V形成的包涵体的数量,并缩小了这些包涵体的大小。ERp57还能防止ER应激和诱导细胞凋亡。此外,ERp57还能调节TDP-43的稳态表达水平。因此,这项研究证明了ERp57在渐冻症中的新作用机制。这也意味着ERp57有可能成为一种新的治疗靶点,以防止与神经变性相关的TDP-43病理变化。
Protein Disulfide Isomerase Endoplasmic Reticulum Protein 57 (ERp57) is Protective Against ALS-Associated Mutant TDP-43 in Neuronal Cells.
Amyotrophic Lateral Sclerosis (ALS) is a severe neurodegenerative disease affecting motor neurons. Pathological forms of Tar-DNA binding protein-43 (TDP-43), involving its mislocalisation to the cytoplasm and the formation of misfolded inclusions, are present in almost all ALS cases (97%), and ~ 50% cases of the related condition, frontotemporal dementia (FTD), highlighting its importance in neurodegeneration. Previous studies have shown that endoplasmic reticulum protein 57 (ERp57), a member of the protein disulphide isomerase (PDI) family of redox chaperones, is protective against ALS-linked mutant superoxide dismutase (SOD1) in neuronal cells and transgenic SOD1G93A mouse models. However, it remains unclear whether ERp57 is protective against pathological TDP-43 in ALS. Here, we demonstrate that ERp57 is protective against key features of TDP-43 pathology in neuronal cells. ERp57 inhibited the mislocalisation of TDP-43M337V from the nucleus to the cytoplasm. In addition, ERp57 inhibited the number of inclusions formed by ALS-associated variant TDP-43M337V and reduced the size of these inclusions. ERp57 was also protective against ER stress and induction of apoptosis. Furthermore, ERp57 modulated the steady-state expression levels of TDP-43. This study therefore demonstrates a novel mechanism of action of ERp57 in ALS. It also implies that ERp57 may have potential as a novel therapeutic target to prevent the TDP-43 pathology associated with neurodegeneration.
期刊介绍:
NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.