Ting Yang, Yanan Du, Mingzhen Sun, Jingjing Meng, Yiyi Li
{"title":"全程安全处置医疗废物的风险管理:进展与挑战》。","authors":"Ting Yang, Yanan Du, Mingzhen Sun, Jingjing Meng, Yiyi Li","doi":"10.2147/RMHP.S464268","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decade, the global outbreaks of SARS, influenza A (H1N1), COVID-19, and other major infectious diseases have exposed the insufficient capacity for emergency disposal of medical waste in numerous countries and regions. Particularly during epidemics of major infectious diseases, medical waste exhibits new characteristics such as accelerated growth rate, heightened risk level, and more stringent disposal requirements. Consequently, there is an urgent need for advanced theoretical approaches that can perceive, predict, evaluate, and control risks associated with safe disposal throughout the entire process in a timely, accurate, efficient, and comprehensive manner. This article provides a systematic review of relevant research on collection, storage, transportation, and disposal of medical waste throughout its entirety to illustrate the current state of safe disposal practices. Building upon this foundation and leveraging emerging information technologies like Internet of Things (IoT), cloud computing, big data analytics, and artificial intelligence (AI), we deeply contemplate future research directions with an aim to minimize risks across all stages of medical waste disposal while offering valuable references and decision support to further advance safe disposal practices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164087/pdf/","citationCount":"0","resultStr":"{\"title\":\"Risk Management for Whole-Process Safe Disposal of Medical Waste: Progress and Challenges.\",\"authors\":\"Ting Yang, Yanan Du, Mingzhen Sun, Jingjing Meng, Yiyi Li\",\"doi\":\"10.2147/RMHP.S464268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decade, the global outbreaks of SARS, influenza A (H1N1), COVID-19, and other major infectious diseases have exposed the insufficient capacity for emergency disposal of medical waste in numerous countries and regions. Particularly during epidemics of major infectious diseases, medical waste exhibits new characteristics such as accelerated growth rate, heightened risk level, and more stringent disposal requirements. Consequently, there is an urgent need for advanced theoretical approaches that can perceive, predict, evaluate, and control risks associated with safe disposal throughout the entire process in a timely, accurate, efficient, and comprehensive manner. This article provides a systematic review of relevant research on collection, storage, transportation, and disposal of medical waste throughout its entirety to illustrate the current state of safe disposal practices. Building upon this foundation and leveraging emerging information technologies like Internet of Things (IoT), cloud computing, big data analytics, and artificial intelligence (AI), we deeply contemplate future research directions with an aim to minimize risks across all stages of medical waste disposal while offering valuable references and decision support to further advance safe disposal practices.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/RMHP.S464268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/RMHP.S464268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Risk Management for Whole-Process Safe Disposal of Medical Waste: Progress and Challenges.
Over the past decade, the global outbreaks of SARS, influenza A (H1N1), COVID-19, and other major infectious diseases have exposed the insufficient capacity for emergency disposal of medical waste in numerous countries and regions. Particularly during epidemics of major infectious diseases, medical waste exhibits new characteristics such as accelerated growth rate, heightened risk level, and more stringent disposal requirements. Consequently, there is an urgent need for advanced theoretical approaches that can perceive, predict, evaluate, and control risks associated with safe disposal throughout the entire process in a timely, accurate, efficient, and comprehensive manner. This article provides a systematic review of relevant research on collection, storage, transportation, and disposal of medical waste throughout its entirety to illustrate the current state of safe disposal practices. Building upon this foundation and leveraging emerging information technologies like Internet of Things (IoT), cloud computing, big data analytics, and artificial intelligence (AI), we deeply contemplate future research directions with an aim to minimize risks across all stages of medical waste disposal while offering valuable references and decision support to further advance safe disposal practices.