{"title":"一氧化碳在刻面金表面和边缘的吸附和歧化作用","authors":"David Khayata, Gil M. Repa, Lisa A. Fredin","doi":"10.1016/j.susc.2024.122533","DOIUrl":null,"url":null,"abstract":"<div><p>Localized surface plasmons (LSP) on faceted surfaces of gold nanoparticles enable carbon monoxide disproportionation to be driven at room temperature. In order to expand the known surfaces that catalyze this reaction, we explore the adsorption of carbon monoxide at top, long bridge, short bridge, and hole sites on gold (100), (110), (111), (211), and (311) faceted surfaces, as well as the reaction barriers for disproportionation at the lowest energy adsorption site on each surface and edges between two (311) surfaces and (100) and (110) surfaces. Generally, the less atomically dense, higher index facets promote both good adsorption and reactivity, and the edges show lower barriers for disproportionation. For most of the explored surfaces, adsorption directly on top of a gold atom is most favorable. The lowest activation energy for carbon monoxide disproportionation to amorphous carbon and carbon dioxide is predicted for two carbon monoxides adsorbed on top of atoms on the (311)/(311) edge.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption and disproportionation of carbon monoxide on faceted-gold surfaces and edges\",\"authors\":\"David Khayata, Gil M. Repa, Lisa A. Fredin\",\"doi\":\"10.1016/j.susc.2024.122533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Localized surface plasmons (LSP) on faceted surfaces of gold nanoparticles enable carbon monoxide disproportionation to be driven at room temperature. In order to expand the known surfaces that catalyze this reaction, we explore the adsorption of carbon monoxide at top, long bridge, short bridge, and hole sites on gold (100), (110), (111), (211), and (311) faceted surfaces, as well as the reaction barriers for disproportionation at the lowest energy adsorption site on each surface and edges between two (311) surfaces and (100) and (110) surfaces. Generally, the less atomically dense, higher index facets promote both good adsorption and reactivity, and the edges show lower barriers for disproportionation. For most of the explored surfaces, adsorption directly on top of a gold atom is most favorable. The lowest activation energy for carbon monoxide disproportionation to amorphous carbon and carbon dioxide is predicted for two carbon monoxides adsorbed on top of atoms on the (311)/(311) edge.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824000840\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000840","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Adsorption and disproportionation of carbon monoxide on faceted-gold surfaces and edges
Localized surface plasmons (LSP) on faceted surfaces of gold nanoparticles enable carbon monoxide disproportionation to be driven at room temperature. In order to expand the known surfaces that catalyze this reaction, we explore the adsorption of carbon monoxide at top, long bridge, short bridge, and hole sites on gold (100), (110), (111), (211), and (311) faceted surfaces, as well as the reaction barriers for disproportionation at the lowest energy adsorption site on each surface and edges between two (311) surfaces and (100) and (110) surfaces. Generally, the less atomically dense, higher index facets promote both good adsorption and reactivity, and the edges show lower barriers for disproportionation. For most of the explored surfaces, adsorption directly on top of a gold atom is most favorable. The lowest activation energy for carbon monoxide disproportionation to amorphous carbon and carbon dioxide is predicted for two carbon monoxides adsorbed on top of atoms on the (311)/(311) edge.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.